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EDITOR'S PREFACE

The name of the author of the present monograph, V. I. Rozenberg, is /3
already known to a wide circle of experts in the field of application of radar
methods to meteorology, atmospheric optics and radar theory.

In his new monograph, V. I. Rozenberg develops his earlier results of
studies on the scattering and attenuation of centimeter, millimeter and sub-
millimeter electromagnetic radiation by atmospheric particles. These results
are related primarily to a natural generalization of classical theory, con-
siderably extended in the known works of K. S. Shifrina, H. K. van de Hulst,
D. Deyrmendzhana, and others, to the case of a nonconcentrically layered
spherical particle for an arbitrary location and different dielectric proper-
ties of its layers.

Using this theory and modern computers, the author analyzed for the first
time the fundamental radar characteristics (scattering cross sections,
attenuation cross sections, etc.) of a series of practically important types of
hydrometeors, taking into account their surface properties, the layered charac-
ter of their structure, and various regular aspects of the distribution of
density and permittivity.

It is particularly important to note that Rozenberg did not confine him-
self to a discussion of the radar characteristics of individual particles, but
has constructed an extensive theory of the scattering and attenuation of
electromagnetic radiation by arbitrary collections of such particles, allowing
for multiple radiation exchange between them, a theory from which Mie express-
ions for a polydisperse medium follow when certain ad hoc assumptions are made.
This brings the theoretical radiometeorological models very close to the actual
processes taking place in the atmosphere.

The author also concentrates a great deal of attention on Mie calculations,
pointing out a number of new governing principles and relations. He performs
his calculations only after carefully choosing permittivities of hydrometeors
by thoropgh analysis of numerous literature data and his own studies. To our
knowledge, most of the numerical values of permittivity of water over a wide
range of temperatures (including negative ones) and wave lengths listed in the
Appendix have never been published before, They can be successfully used in /4
various geophysical, radioastronomical and oceanographic studies.

There can be no question that the methods of investigation proposed by the
author and the results obtained through their use, presented in the monograph
on a modern mathematical level, will prove very useful to scientists special-
izing in the field of the theory of scattering and attenuation of electro-
magnetic radiation, as well as specialists concerned with problems of a broader

Preceding page blank 1



introduction of radar into the practice of supplying the national economy of
the country with meteorological information and weather forecasts.

V. G. Morachevskiy
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SCATTERING AND ATTENUATION OF ELECTROMAGNETIC RADIATION
BY ATMOSPHERIC PARTICLES

Introduction /5*

The last decade has been characterized by a particularly rapid develop-
ment and improvement of radar engineering. This in turn offers steadily in-
creasing possibilities for the application of radar methods in different areas
of science (meteorology, geophysics, astrophysics, oceanography, spectroscopy,
etc.), as well as in the national economy (in the control of ships, aircraft,
satellites and rockets, in weather and flood forecasting, mapping of the
Earth's surface, etc.).

A major trend in the perfection of radar stations (RS) consists in in-
creasing the transmission range and improving the distinguishability of the ob-
jects being detected, this being achieved primarily by increasing the resolving
power of the radar equipment, partly as the result of a narrowing of the signal
radiation pattern along one or both angular coordinates. However, since the
design and technological factors limit the antenna dimensions, the resolving
power of RS can be increased and the permissible enlargement of the antennas
can be achieved mainly by using a shorter, microwave (centimeter, millimeter and
submillimeter) range of radio waves.

However, the operation of microwave RS, particularly in the millimeter
and submillimeter range, is affected by various atmospheric formations
(precipitation, clouds, fogs), which attenuate the radar signals and decrease
the radar detectability of the objects being tracked.

As we know, attenuation of radio waves passing through regions occupied by
hydrometeors is due to the fact that a part of the energy of the propagating
wave is absorbed by particles and converted into heat, and part is scattered by
these particles in different directions.

A decrease in the radar detectability of targets located in the region of
hydrometeors is due to the fact that in addition to the attenuation of electro-
magnetic waves, their scattering by particles in the radar (backscattering)
direction also takes place. Radio waves scattered in this manner are received
by the RS as noise masking the radar signals reflected from the target.

Thus, the determination of the optimal characteristics of radar systems /6
operating under complex meteorological conditions as well as an appropriate
choice of the working frequency and of various circuit modifications to reduce
the sensitivity of an RS to the influence of meteorological factors are com-
pletely determined by the radar properties of the atmospheric formations.

* Numbers in the margin indicate pagination in the foreign text.



This has stimulated a broad front of radiometeorological research which
in turn, along with visual, aircraft and network synoptic observations, has
provided highly important information on the fundamental problems of atmos-
pheric physics and has also permitted improvements in the techniques of
measurements of precipitation intensity, weather content of clouds, speed and
direction of wind, microstructural characteristics of hydrometeors, atmospheric
turbulence parameters, etc., techniques required for the operation of the
weather service.

In many cases, this has resulted in progress in the effectiveness of
measures taken to prevent damage done by hail, to disperse fog, to produce
artificial rain, etc.

The timeliness of studies of radar characteristics of atmospheric forma-
tions has increased even more at the present time in connection with the swift
development of aviation and astronautics.

Flights of aircraft at increasingly higher speeds increase their chances
of encountering hail or liquid drop precipitation. Because of the presence of
strong vertical currents in the atmosphere, the possibility of such an encounter
is not excluded even in a completely cloudless sky. The designers of the latest
aircraft are therefore faced with the serious problem of developing radar equip-
ment capable of reliably detecting accumulations of atmospheric particles
(hydrometeors) of different types. The creation and perfection of such RS is
indissolubly tied to progress in the area of research on the radar properties
of atmospheric formations.

Until recently, the entire theory of radar reflectivity and attenuation of
radio waves by hydrometeors was based on a representation of the latter in the
form of a collection of individual, randomly located spherical particles, the
mean distances between which are much greater than their own size. In this
assumption, the radar characteristics of the collection under consideration
were obtained additively from known Mie solutions of the problem of wave
diffraction by a single homogeneous sphere.

However, recent experimental data have shown that actual precipitation is
more likely to consist of a collection of groups, each of which consists of
two or more drops located close to each other.

Moreover, experimental analysis of such particles as hail (see the figure,
for example), performed by a number of Soviet and foreign authors has shown
that its representation in the form of a homogeneous particle is an unjustified
idealization. Thus, a more complete approximation of actual atmospheric
formations has led us to the necessity of constructing a more general theory of
scattering and attenuation of electromagnetic radiation by a collection of non-
concentrically layered particles arbitrarily located with respect to one /7
another. The development of such theory with computational aspects of the
algorithms constructed, and also their numerical realization on modern com-
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puters with reference to radiometeorological problems is the subject of the
present monograph, written on the basis of studies made by the author in the
last few years.

Central Cross Section of a Hailstone with Nonconcentric
Layers of Different.Densities, After K. A. Browning.

The monograph consists of two parts including six chapters and an Appendix.

The first part is devoted to a development of the theory of scattering and
attenuation of electromagnetic radiation by an arbitrary collection of particles
differing in physical structure and spherical in shape, taking the multiple
reemission between them into consideration. Particular attention is given to
radar and radiophysical characteristics such as scattering and attenuation
cross sections, scattering indices, etc., and also to computational aspects
of the formulated algorithms.

The second part contains an application of the resultant theory in its co-
herent and noncoherent approximations to specific problems in radiometeorology:
scattering and attenuation of submillimeter, millimeter and centimeter radio
waves by atmospheric formations. A very detailed study was made of the per-
mittivities of water, ice, homogeneous mixture of water with ice and snow as a
function of temperature, state of aggregation and wavelength, and also of the
physical conditions determining the different structures and parameters of
atmospheric particles.

Considerable attention is given to the analysis of cross sections of
scattering and attenuation of microwaves by both individual particles and their
collections in relation to the relative locationi and shape of the particles, /8
their different states of aggregation, dielectric properties and temperature,
and for many-layered hailstones, also in relation to the relative location of
the layers, the relations of their thicknesses and densities, and also in

1Particles located fairly close to one another are taken into account.
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relation to the particle size distribution function, maximum and minimum
diameters in the spectrum, wave length, and physical conditions in the atmos-
phere.

The Appendix gives detailed tables of the permittivities of water over a
wide .range of wavelengths and temperatures. The tables given here may be useful
in solving many problems in many areas of science, engineering and national
economy, wherever a qualitative or quantitative consideration of the radar
properties of hydrometeors is necessary.

The book uses a continuous numbering of the chapters and references, but
the numbering of the paragraphs, figures, tables, and formulas is separate for
each chapter. Each chapter, and in some cases the subsections begin with a
brief survey of the present status of the problem and literature. When this
was not necessary, in view of the presence of a similar analysis in the
literature, the author confines himself to references to the appropriate
sources.

The author is fully aware of the unavoidable presence of various types of
errors in a monograph of this size, but there would no doubt have been many
more were it not for the severe constructive criticism of its reviewers, on the
staff of the A. I. Voyeykov Main Geophysical Observatory and Central Aerological
Observatory, for the highly qualified and painstaking efforts of its editors, and
for the assistance and support of colleagues and friends. To all of them the
author expresses his sincere gratitude.
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PART 1

CHAPTER 1.

SCATTERING AND ATTENUATION OF ELECTROMAGNETIC WAVES BY A
NONCONCENTRICALLY LAYERED SPHERICAL PARTICLE

§ 1.1. Spheres Arbitrarily Located Inside One Another in the Field of a /9
Dipole Radiator. Statement of the Problem.

The beginning of work on the theory of scattering of waves by a homogeneous
sphere apparently dates back to the end of the last century [1]. From
that time up to the present, the number of publications dealing with various
aspects of this theory has continued to increase steadily.

About 20 years ago, K. S. Shifrin [2] and A. L. Aden and M. Kerker [3]
almost simultaneously published papers that gave a rigorous solution of the
problem of diffraction of electromagnetic waves by a sphere with a concentric
spherical inclusion. These solutions were then used as the basis for a whole
series of studies related to the theory of multilayered spherically symmetric
structures.

The most detailed and complete discussions of the case of more than two
layers may be found in [4], and its computational aspects, in [5].

In 1959, B. P. D'yakonov published his results [6] on the diffraction of
electromagnetic waves by a sphere with a nonconcentric spherical inclusion
under the assumption that the incident field was symmetric with respect to the
axis connecting the centers of the two spheres. Unfortunately, this paper con-
tained a number of errors, some of which were noticed and corrected in [7].

A paper by Ye. A. Ivanov [8] was devoted to a rigorous solution of this
axisymmetric problem with the condition that the source of the electromagnetic
field was an electric dipole located on the line of centers of the diffracting
spheres2 . This author also gave results [9] for the case of arbitrary orien-
tation and location of the dipole. However, in view of the inaccuracy of some /10
of the initial expressions, due to the use of expansions of special functions
of other authors with an associated Legendre function determined in different
ways, the final results of [9] need to be corrected.

Some of the inaccuracies were pointed out in [10] 3 , which, in addition to
the problem analogous to [9] in formulation, also discusses the diffraction of
a plane wave as well as electromagnetic and radar characteristics of diffract-
ing objects.

2 It should be noted that the paper gives an inaccurate demonstration of the in-
correctness of the initial expansions and final results of [7].

3 See also [11], which gives a more comprehensive discussion than [10].
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Let us note at this point that rigorous methods of construction of the
solution and their validation will be used in these problems to obtain solu-
tions of the problem of diffraction by a sphere with any number of spherical
inclusions provided that they all have a common axis of symmetry.4

In regard to the problems formulated in its title, the present chapter pre-
sents a solution of the problem of scattering and attenuation of electromagnetic
waves by a set of spheres arbitrarily (including asymmetrically) located
inside one another. Some of these results were published by the author in
[12]. Let us now turn to the statement of the problem.

Consider that in an infinite space there are *v spheres arbitrarily
located inside one another (Figure 1.1) with centers 01, 02,... 0

(0102 = h2 , 020 = h3,..., -0 1  = h ) and radii bl, b2,..., b , respectively.

We will term medium 0 the part of space external to the sphere of radius

bl, medium j the part of the interior of the sphere of radius b. excluding the

region occupied by the sphere with its center at point Oj+ 1 (j = 1, 2,...,

v - 1), and medium v the interior of the sphere of radius b . We will relate

with medium j (j = 0, i,..., v) its electromagnetic parameters E (absolute
permittivity) and P (absolute permeability), assuming them to be complex in the
general case. 5

We will also assume that at some point 00 of medium 0 (0001 = h1 > b1)
there is a source of excitation of electromagnetic waves constituting an
elementary electric dipole 6 of moment p exp (- iwt) arbitrarily oriented in
space.

The problem consists in determining the electromagnetic field induced by
the electric dipole in each of the indicated media.

4 See for example the comment of the author of [9] on p. 359.
5 See expressions (4.1)-(4.3).
6 In the case of a magnetic dipole of moment m, the solution will follow
directly from the relations between the Debye potentials of the primary field

of the electric (U00, V00) and magnetic (Um0, Vm) dipoles [9]: Um

- -V00 , Vm) = U0

6



e t (0/ )I

wohe

Figure 1.1. Collection Of Spheres Located Inside One Another

In the Field of a Dipole Radiatior

A rigorous solution of this problem amounts to solving the Maxwell 
/12

equation:7 curl H( j )  .E( j )

J

curl E( j ) = -BH ( j ) ,

where

2r-e (1.1)
Sj - iwej , j -iIAJ, (- - ,

7The time factor exp(- iwt) is omitted hereinafter. The SI system of units

is used.
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X is the wave length, c is the speed of light in medium 0, under certain
boundary conditions consisting in the continuity of the tangential components
of the resultant fields at the boundaries of the media considered, and with the
condition of Sommerfeld radiation at infinity.

We will formulate the problem in the coordinate form, and to do so, will
introduce 2v - 1 coordinate systems.

System X 1Y 1Z1 . Axis Z1 will be drawn through point 01 collinearly to

vector 0100; axis X1' along the line of intersection of the plane perpendicular

to 0100 at point 01 and to the plane passing through axis Z1 and vector p;

axis Y1, perpendicular to axes X1 and Z1 so that the coordinate system X1Y Z1

is a right-handed system. If vector p lies on the straight line 0100 (verti-

cal dipole), the position of axis X1 is fixed so that plane X101Z 1 passes

through point 02. The angle between the dipole moment p and axis Z1 will be

denoted by .0'

Systems X'Y!Z! (j = 1, 2, ..., v - 1). We draw axis Z'. through 0.
JJJ J

collinearly to the vector 0.0. axis X'., along the line of intersection of
3 3j+1

the plane perpendicular to axis Z'. at point 0. with plane X.O.Y. and reorient
3 J JJJ

it in the direction from which the observer sees the rotation superimposing
axis Z. on axis Z'. through an angle smaller than r, taking place counter clock-

J 3
wise; axis Y., perpendicular to axis X'. and Z'. so that the coordinate system

X'.Y'Z'. has a right-handed orientation. If point Oj lies on the straight
3 3 1 j+l

line Oj 1 0j , then axis Xt will be oriented along axis Xj, Y. along axis Yj,j- 1 3
and Z' along axis Z..

3 3

System X.Y.Z. (j = 2, 3, ..., v). These are obtained by shifting the

systems X' Y'. Z' parallel to one another along the positive semiaxis Z'.
j-1 -1 - -1

by a distance h.. The origin O0., moves to point 0. 8
3 J-1 3

We will define the position of the coordinate system X'YZ. (j = 1, 2,...,

v - 1) by means of Euler angles: Xj -- the angle 9 , made by axis Xj with axis

8 The construction of the coordinate systems introduced is carried out in the
order X1Y1Z1 X , X2Y2Z2 ,..., X' 1Y' 1Z' X Y Z by induction.

9 Xj and the polar angle Xj* of the position of the center 0j+l in spherical

coordinates of system X.Y.Z. are related as follows: Xj* =  -Xj , and as
3 j j 23

Xj changes from 0 to 2w, Xj* ranges over the interval from - - to - .
S 2

8



X. (0 < Xj < 2n); e. -- the angle formed by axis Z. with axis Z. (0 < 0. < f), /13
J -J J J -j

by positive angle we mean the angle (in the right-handed coordinate system)
through which a counter clockwise rotation takes place for an observer looking
from the positive end of the axis about which the rotation takes place. The
system X'.Y'.Z'. is uniquely defined by the Euler angles Xj, 0.. An exception is

the angles corresponding to the position of points Oj+ 1 On the positive or

negative part of axis Z.. Then, according to our assumption on the choice of

the system X'.Y'.Z'., we will assume for both cases that 0. = 0 and Xj = 0.

Considering the characteristics of their mutual arrangement, we introduce
into each of the constructed systems (j = 1, 2,..., v) the following spherical
coordinates: in the system X.Y.Z. - r., ., B (j = 1, 2, ... , v); X'.Y'.Z'. - r.,

', j+l (j 1, 2, ... , v - 1), using the formulas:

Xj =r sin O cos pj,
y = rjsin Oj sin Fj,
zj = rj cos Oj,

x = rj sin Oj cos .,,

y = rj sin O sin j. 3,

z=rj cos 0,
(1.1a)

The system of Maxwell's vector equations in spherical coordinates, for

example, r, e, 4, is reduced to a single scalar equation by means of the Debye
potentials U. and V. of the medium j, related to the components of the electro-

magnetic field by the expressions:

02 (rU)
_- Or2 4 k(rcJ ),

2 O (rVj) ( j)

Or2

I a2 (rUj) j .o(rVj)

S r Or 0 r sit 0 09

a 0 (rUj) ] 02 (rVj)

Sr sn0 0j rI' o)(ri

r o r 4n U (1.2)

9



where E (j )  H j )  , are respectively the projections of vectors E( ) and H j ) /14

of medium j in the spherical system r, 6, 0;

with k. chosen so that

lm k1  0. (1.4)

The functions Uj., V. satisfy one and the same Helmholtz equation:

d2 (rTj) e)d n +0 (1.4a) T 2T
dr-2  + rsin a dosino do ) r sin 2  a kr , (l.4a)

where

T= {Uj, Vi), j= 1, 2, ... , v. (1.5)

Introduction of the Debye potentials makes it possible to reduce the
system of Maxwell's vector equations with boundary conditions not separable by
coordinates to a system of scalar equations (1.4a) with separated boundary con-
ditions.

To system (1.4a) it is necessary to add the conditions imposed on T. which

result from (1.2), assuming the continuity of the tangential components of
vectors E and H at the boundaries of the media considered:

qj j = j+ITj+_p I
0 (rje 1 Tj) a ('r+IT +) where rj+ 1= bj+ 1,

dr . drj + 011,

where

sq= (j, P?). (1.7)10

T0  T00 +T 0s, T00 = U00 , V00 , TOs UOs, V (1.8)

TOs is the solution of equation (1.4a), and the symbols U00, V0 0 and U0s, V0s

entering into expressions (1.8) are the Debye potentials corresponding to the

primary (E(0 0 ) , H (0 0 )) and secondary (E(0 s ) , H (0 s )) electromagnetic fields in
medium 0. Thus, the problem amounts to solving equations (1.4a) with boundary
conditions (1.6) and the condition of Sommerfeld radiation

aT0 -ikoTo= o (1.9)

1 0Hereinafter a set of two expressions (separated by a comma) in braces will
symbolize the correspondence of the first to the potential U and of the
second to the potential V.

10



To solve the stated problem, it is necessary to have formulas for re-
expanding the separated solutions of equations (1.4a), written in one system,
in terms of these same solutions in another coordinate system (addition
theorems).

§ 1.2. Addition Theorems /15

Many papers have been devoted to addition theorems of the functions

h (kr)Pm(cos 0) and j (kr)Pm(cos 8), where
n n n n

,(z) = (-1) (  H (1) (z 1)"
2n  dzn + m

(1.10)

H(1)l(z) is a Hankel function of the first kind of half-integer order,n+

n+2 z) is a Bessel function of half-integer order, and Pn(z) is an associated

Legendre function.

Thus, W. Trinks [13, 14] obtained these theorems in the form of a complex
algorithm of comparison of the coefficients for the same terms in quintriple and
triple series, leaving aside the study of range of validity of these con-
structions. 0. A. Germognova [15] simplified this procedure by finding the
analytical form of notation of Trinks' algorithm without discussing the region
of convergence of the constructed expansions. We should mention the somewhat
related paper of Sato Yasuo [16], who obtained addition theorems of

h(2)(kR)Pm(cos O)e im  in the form of expansions, not in Bessel functions, butn n
in degrees of kr; the expansion coefficients are not given by a general formula,
but are obtained with the aid of recurrence relations.

In their general formulation, these problems have been treated by B.
Friddman and J. Russek [17], A. Ben-Menahem [18], who wrote the principal re-
sults of [17] in a shortened operator form, S. Stein [19], who corrected the
main errors of [17], 0. Crusan [20], who obtained a series of new recurrence
relations for expansion coefficients, Ye. A. Ivanov [21], who derived addition
theorems for more general spheroidal functions and discusses them in special
cases of spherical coordinates in [8, 22], and the author [11], where a rigor-
ous validation of addition theorems is given along with their various repre-
sentations.11

1 1See also the pertinent results published in [9] and [57].
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The addition theorems of the functions P m(cos 6)e im  in the case of ro- /16n

tation of the coordinate system are discussed in detail in [23-26], and the

computational aspects, in [27].

In view of the fact that the general transformation of the coordinate

system in plane XOZ may be represented as a superposition of the motion along

axis Z and rotation about it, we first obtain the addition theorems of the

functions h (kr)Pm(cos 0) and j (kr)Pm(cos 0) in the case of a parallel shiftn n n n
of the coordinate system along axis Z.

Addition theorems of functions h (kr)Pm(cos e). Let the Cartesiann n
coordinate systems X 1 YZ and X2Y2Z 2, obtained by shifting the former parallel

to itself along axis Z1 to a new origin 02 be introduced into a three-dimension-

al space (Figure 1.2), along with the spherical coordinates rl, 01, 4 and

r2,' 2, respectively, associated with these systems. We will denote the

spherical coordinates of the origin 02 in the coordinates rl, 61, q by 112'

012, 0. We will assume that at point A, located in plane X01 Z1 at distances b

from point 01 and2 Z - b 2 from point 02, the function ex (ikR) is given,

where R = AP, and P is an arbitrary point in space.

z, Let us consider the case 612 = 0. We have

Z , exp (ikR(o,0  ) exp (ikRo( )(
ikR ikR (1.11)

ikR(0o)  ikRko )

where

, A M ,R(o,) ri + b - 2rib cos T",

SJr .+ b' tan a - 2r.b tan a cos y
/02) 2 2 2

r, b - (1.12)
arccos , 012f--y <

Figure 1.2. Coordinate
Systems in Addition cos ^ = cos jA, 0 1P) - cos 0, cos . - sin 0, sin a cos T,
Theorems. (O2AOP )

We use the formula =cos 0 cos ( - a) sin 02 sin ( -)cos'p.

exp (1kR)2 (2 + 1) X

12



where R = p2 + p - 2pp0 - cos 6, and expand both parts of equality (1.11) in L1

series
series (2n 1) P,, (cos 1) j,, (kb) h,, (krl) =

n=O

= (2-: + 1) P,(cos 2) ; (kb tg o) h, (kr.), (1.14)
.=0

in the range

r> b, r 2 >] b'. (1.15)

Using the addition theorms for Legendre polynomials [28] and considering

(1.12), we obtain the expressions:

P,, (cos -1) = , (-1 )'p"n" 1 (cos 0) P,' (cos 3) cos n y,
] ,In "= 0I n =

P. (cos T") j= - ,, ( 1)' PT"' (cos 09) P ' cos - ± 2 cosm , (1.16)
(COS 2) [COS + ) (1 16)

1 for m =O,
= 2 for mn 1.

Substituting these expressions into (1.14), we find

(2n + 1) j,, (kb) h,, (kr,) V (-1) P-n (COS 0) P"I (cos ) X
n=O mO0

X cos my = (2 + 1) j, (kb tg a) h (kr,) X (1.17)
:=0

X (-1)",,P (cos 02) P" cos)] cos iy. (1.17)

In order to obtain the required expansion, it is necessary to separate on

the right side of (1.17) a factor of the form j (kb)Pm(co s a). For this pur-

pose, using [29] the integral representation

. j ( k x ) P ' ( co s V) eCos Cos

o (1.18)

X J,, (kx sin sin u)-P'" (cos ti) sin a dit

and the expansion

e- ih
t ,
1 os "  i-" (2v -1) j, (kl~2) P, (cos u), (1.19)

13



after a series of transformations, we obtain: /18

i-- t

j, (kb Ig a) P'" cos - i-' (2- + 1) j, (k 12 )
0

X e  '
k cos a cos " i,, (kb sin a sin ii) P, (cos it) P (cos u) sin a du. (1.19a)

0

Here we have switched the summation and integral signs, which is possible in

view of the uniform and absolute convergence of the series.

We will represent the product P (cos u)Pm(cos u) in the form of a series

with respect to associated functions pa(cos u).

Such an expansion may be obtained as a special case of the Clebsch-Gordan
series [26] for generalized spherical functions defined on the surface of a

sphere and belonging to a functional space in which an irreducible represen-
tation of the weight n of the rotation group of three-dimensional space is
realized:

P,(cosu) Pm(cosu) = ' b,P m(cos ),
G=v-Vl (1.20)

where the prime in the summation signifies that a letter extends over values of
a having the same parity as the upper index of the summation,

1

b= 2~2+ 1 (_ln Sp (x) P (x) P m (x) dx, (1.21)
-1

( + (m)!(o-m)! , o; 0, m, in) Xb,- (z--m)! (a+ m)!

X C(v, r, 0; , 0, 0), (1.22)

C(Z, 1 2, Z; j, k, j + k) are the Clebsch-Gordan coefficients, whose explicit

form and various representations may be found, for example, in [25, 26].

Substituting expression (1.19a) into (1.17) and considering relations

(1.20) and (1.18) and the orthogonality properties of trigonometric functions,

we obtain

' (2n -- 1) j,, (kb) P (cos a) h,, (kr,) PT," (cos fi,)

- (2- +- 1) , (kr0) P-"' (cos 0.) i-' ' (2v + 1) j., (W1 ) X

S ' b7 ij, (kb)Pin (cos a).

(1.23)

For further considerations, the following lemma will be necessary.

14



Lemma 1. For every natural n for which the repeated series /19
0 n+i
E E Ia. I converges, the following equality applies:

i=O j= n-ij 1)
n+I n+i

a. (1.24)- a ii r. L. a i
i=0]=|n-il i=0-j jn-i|

Proof. It follows from the absolute convergence of the repeated series
that the sum will not change if its terms are rearranged. This will be done
for the sum to the left of the equality sign in (1.24).

Without detracting from generality, we will assume than n is an even

n-i n+i
number. We will divide the sum U = a.. into two sums: U(1) and

n -3n
(2) i=0 j=ln-il
n

n n-1 n+1 n+i

S-- + n + V a, j.
i=Oj=ln-il I=ni=1n-il (1.25)

We will expand the first sum and rearrange the summands, combining terms
with the same second index:

nl).=ao.+(a, + a,,+,)+(a2.,2 + a2.+ a2,.+2) + ... +

+ (a._-22+a,,4+ ... +a._2,,_2) + (a n- ,,+ an-,3
n-I n-2 n-1

+ ... +a,,_,U-_)= I a,,+ I ai2+ X' a,.+
I=n-l I=n-2 t=n-3

n-2 A-n--1 n-2

+ ' a,,+... +1a, 2, - a- ,++ a,+
J=n-4 1=2 1=1 1=0

n- n-2 n-2

+ a,.+, + 'a,,+- ... + ' a,,.-_,+
1=1 1=2 l:=n-4

n-1 n-2 n-

+ I a2.-- 2+ Y' a,_,2+ V ,,-.
i=.-a i=.-2 i=n-1 (1.26)

We transform the second sum U(2) , having changed the summation index:

O'n = i i-n + a,-n+i2 + + ai i+n=
i-n l-n l=n

S+ a, -
a i-n it i a,+-- 2 .i - a-.+21+

i=0 =2 i=-2n-2

-+ a,_,. (1.27)
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Having used expansions (1.25)-(1.27) and collected the terms with the same /20

second index, we obtain

+ a.j- .. I' j.,

U,, no+ (a, $-1 n+1 t) _(n-2 n2 _ 2 **,

j=n-ii i=0j= n-Li

q.e.d.

Applying the lemma to the right side of equality (1.23) and changing 
the

order of summation in T and v, we find

o(2n -- 1) j,, (kb) P', (cos a) h,, (kr) P-"' (cos O,) =
n=0

0 0

<i'j, (kb) PT (cos ) (2- + 1) h, (kr2) X

x P"' (cos 02) i-'- (20 l)j, (k(C)S ),.( .(1.28)

The validity of applying lemma 1 to (1.23) and of transposing the 
summation

signs in (1.28) is based on lemmas 2-4.

Lemma 2. If for complex functions of a natural argument xn and yn, defined

for each 1 2 nCN, the equivalence condition IXnl-I-ynl is fulfilled 13 , a constant

independent of n will be found such that for all n CN the following 
inequality

is valid:

Ixn < const lynl.

Proof. It follows from the theorem on the boundedness of a variable

having a limit.

Lemma 3. The repeated series R = - 1) h kr2 X

T=0 0= v-T
XP-m(cs 02)i -T-(2a+l)j (kl12)b mo converges absolutely for every v in the

range r2 > l12'

1 2By N is meant the set of all natural numbers. x

13This,condition is equivalent to the equality lim = 1.
n-)m n
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Proof. It follows from asymptotic expansions of the functions j (z) and
h (z) for v, T + m and from lemma 2 that

j, (z)I< const, (2 v + )! h (zl) < const,_ (2--- )!!I( 1)! (1.29)

and from the estimate of [29]

S(n + 2n) ' ,-1

';' (.v) ______r,_f n! (1--X 2 ) 2 , n 1,

n -- m 1 0, 0m O
and from the condition P0 (x) 1 /21

P, '" (x) < const3 ( +t n )  (1.30)

Considering inequality (1.30), we obtain from (1.21)

b < const4 (2v + I) ( + z) ! (v- m) !
"!! (1.31)

If we write j(i) (z), where I is a Bessel function of

an imaginary argument [28], then on the basis of the representation

j, (z)= z 2k(2 + 2k + )!

one can show that

1 (z) I < J(z ). (1.32)
By virtue of estimates (1.29)-(1.32) we have

I R!,  < onst- (2v + 1) (' - n) !

X (2: , 1) i ( ' --n)! (- + ) + ! (v c)k l2).

1 k=2 1-)1 (1.33)

Applying A. Jones' inequality jn(IZI) >jk(IZl) [30] valid for all z and
k > n > 0, to expression (1.33), we obtain the expression 14

14The same result also follows from D. Cochran's more general theory [31].
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I i « CO1St (2v + I)(-m) 

X NO (2: + I) !! ( - ,n) ! (: + min) ! (v + )2 (k,

T=O

from which, if one considers the asymptotic expansion for v - of the
function I (izi) and lemma 2, the following results:

R I < const, (2v + 1) (v - m) X

X (2,+ 1)!1( - m)I(,+m)I(V+ )2 I Vd -_ .
[!] 1 kr2 12 1 v- + + 1]ll (1.34)

The proof of the lemma is completed by applying d'Alembert's criterion to series /22
(1.34).

00 "
Lemma 4. The series Fm= T: i j (kb)P (cos a)Rm  converges absolutely

in the range r2 > 112 + b.

Proof. It follows from relations (1.29), (1.30), (1.34) that

SF,,, I < const 7 (S, S),

where

S, lbl +b. (V m)! (v - ) )!k b 12bl (2v,- I) X
v=O

X 'Y (2 + 1) !! (- n) ! (t + m) ! (' + )2

A [!1I kr2 11 I I2 2(v - ) F I !!
7=0

(2 _ O)!! (-, m)!( +n)!( v )2! 1 l
-"- .i 2(-v) - I!! A )

-!2 < consts, [,!12 < const8,

then makes the substitution n = v - T, in the expression for Sl and n = T - v

in the expression for S2, and again applies the inequalities

18



(2v - 1)!! (2n + I)!! < constg n!

(2n + 2v + I)!! (n + 2v) (n + ')3 (n +-,
(2n + 1) !! (2v- 1)!! < constio v! n!

which follow from the Stirling formula and from lemma 2, one can show that

S1 <const -v((12]) 4 V 1 < 00,
112 r) n i

S. <const2  \ (+ . v)3 (n+) 12 ' (1.35)

To prove the convergence of series (1.35), we will construct a matrix in
v, n from its coefficients and will perform the summation over its diagonals /23
n + v = s -- constant!), the sum of the terms along which is nothing but the
Newton binomial. Then

SCont ( + '12
S2= COS \--3 2 " (1.36)

The series in (1.36) converges for r2 > 12 + b. This completes the proof.

Let us note at this point that although equality (1.28) was derived by

assuming (1.12) 0 < a < -, the series from the analytical functions entering2
into this equality converge uniformly for all a C [0, Tr] for any finite b, rl,

r2, Z12 in the indicated regions. Then, on the basis of the analytic continu-

ation principle theory, expression (1.28) will also hold for a C [2, ir]. On

the basis of the arbitrariness of b in (1.15) and orthogonality of the
associated Legendre functions for a C [0, ff], we arrive at the following
result:

T=0 U n--

X a' , (krh ) Pm' (cos 02), r 2 > 112, (1.37)

where

1a = (- 1)'n 2 1 , 21 (x) P-m (x) P (x) dx

1-1
(7- m) !(v-n)! C (., v, a; in, -m, 0) C (, v, a; 0, 0, 0). (1.38)
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Relations (1.38) together with (1.20) make it possible to determine aa

as the coefficient in the expansion
T+v*I-- nPM- (x) P," (x) = an,p (x).

If l = n, a reasoning similarto the above will lead to

m n+7

h,, (kr,)P'(cosO)= (-1)' ' (2 + 1) i"' -t+ " (kl 2) X
-- 0 ==--

X a h, h, (kr 2) Pl"' (cos 02), r2 > 12. (1.39)

Combining expressions (1.37) and (1.39) and using the property of associated

Legendre functions

(nP (= (-1) P) (x), (1. 40)

we arrive at the following theorem.

Theorem 1. /24

hI,, (kr,) P," (cos 0,) = ( + )! V (2,+1)X
,=0 =l n-)

o si (1.41)

X 2n--+ j (kl 12) h (kr,,) P" (cos 02), r. > 112(

where

";n= (-1)" (-in)! a -

2 + 1SP -" (x) P,7"' (x) Po (x) dx. (1.42)

-1

To obtain an analogous expansion for r2 < Z12 , we use another expansion

(1.13) in (1.11):

~(2n + 1) P (cos D) j. (kb) h. (kr,)=
n=0

= (2z + 1) P, (cosj2 ) h, (kb tan a) j (kr 2)
E=0

which applies in the range rl > b, r2 < 2 ; at the same time, we

initially assume that 612 = 0.
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Applying the same reasoning as in the derivation of theorem 1, we obtain

Y (2n + 1) j, (kb) P.- (cos a) h, (kr,) P- (cos 01) =
n=O

= ~ (2, 1) h, (kb tan a)P'm [cos ( + )] j, (kr 2 ) P-m (cos 2). (1.43)

In order to obtain the required expansions, it is necessary to separate

the factor j (kb)Pm(cos a) on the right side of (1.43). We do this by using

the following integral representation [9, 32]:

2

h.(kr) P' (cos )= im - "  eik'r Cos cos Jm (krsin O sin u) X
0

(1.44)
XP (cos u) sin u du, Rek>O; 0 0< --..

Hence we obtain /25

h, (kb tg ) P" [cos +- -- =

i--= i- ,-i~ CoS a :t cos X

X J,,, (kb sin a sin it) Pl" (cos it) sin it dit.

(1.45)

We can show the validity of the expansion

eikb cos a cos J,, (kb sin a sin u) =

i(2 1) i'- (-1)' j, (kb) P' (cos 2) P-'" (cos u),v=O

which, when substituted into (1.45), gives

h (kb tan a)PT[cos( =i=f-m Y (2v+ ) i-m (-1)X
V=0

X i. (kb) P (cos a) $ eIklt coS U p-,m (cos u) X
0

X P,m (cos u) sin u du.
(1.46)
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Here we transpose the summation sign and the improper integral sign, the
validity of which can be proven by using without any substantial modifications

the proof of the addition theorem for the function hn(kr) given in [33]. Con-

sidering relation (1.38) and the expression

I, (z)= i-  e'z COS UP,, (cos u) sin u diu,
0

which is a special case for (1.44), formula (1.46) will take the form

hT (kb tan a)p- [cos (2+ 1) (-1)+ X

r+0
X j, (kb) Pv (cos a) a,' ,ia+v+ha (kl,2). (1.47)

Substituting (1.47) into the right side of (1.43) and considering the /26
arbitrariness of b and a, we find

h,, (kr,) P7"' (cos 0,) = (-1)"' (2T 1) a ' " " '-n+ X
S=0 == [-n

X h, (kl 12) j, (kr,) P-" (cos 02), r2 < 112.
(1.48)

It is easy to show (by replotting Figure 1.2 and repeating all the pre-
ceding arguments) that when 012 = 7T, expression (1.48) takes the form

a -f-n

h,,(kr,) Pn'(cos,) =(-1) ' Y (2 +1) Y.' a" i: -"X
T=0 a= 1--n I

X h, (kl2) j, (kr) PT " (cos 0,). (1.49)

The following theorem results from (1.48), (1.49) with consideration of (1.42),
(1.40).

Theorem 2.
n+r

h,,(kr)Pm(cos 01) (n-+m)!

x + - -2sIn 2ho (kl,) Gof, j, (kri) P (cos 02), r < 112. (1.50)
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Addition theorems (1.42), (1.50) may be given a different form if they are
transformed on the basis of lemma 1. We thus obtain

,n (COS n-) N. I -- :+2T sin ±,2/i,, (kr,) P. (cos)=-- (2- + 1) i 2 X
=O0a=n--'j

X b'", j (kl,2) h. (kr 2) PT (cos 02), r2 > 112;

h, (kr 1)P (cos () + " (21:-f-2+ sin
-=01==n-- I

Xb h (k112 ) j, (kr,2 ) P' (cos 0O), r2 <11i2.

We will write theorems 1 and 2 in the coordinates introduced in § 1.1:

h, (kjrj+ 1 ) P' (cos ) =

= Fp.,nht (kjr) P"'(cosO), r, >/ (1.51)p=O

h, (kjr, ) Pn" (cos 0i-1 +)

,,,,,,,Jj, (kjrj) PP (cos ), r. < , (1.52)
P=/

where /27
PFpnmj (- n) - 2 - jj+ 1

Fpm (n- m)! (2p ) i j X

X h (kihj 1 ) 'm j=, 1, 2,.... - 1, (1.54)

e! . being the spherical coordinate 0! of the origin Oj+.

We will note at this point that formulas (1.51) and (1.52) also apply for
r. = hi provided 0. 1 0, i.e., these expansions cannot be used for r. = hj+

at point 0j+1, which is the singular point of these expansions.
Addition theorems for the functions jn(kr)P m(cos 0). To obtain the

addition theorem of the other separated solution of the Helmholtz equation, we
will use its integral representation (1.18), expansion (1.19), and the relations

kr cos 0, kr2 cos 02 -1- k1 2,
kri sin 01 kr2 sin 0-,.

Furthermore, reasoning in the same way as in the derivation of the addition
theorem for the modified Bessel function jn (z) in [33], we come to the
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expansion
(s n' -n -2sin

j,(kr, Pn (cos 3)= P, i( "(2: l)j I(klVz)X

X bT,, j, (kr2) P (COS 0,), r l12. (1.55)

Applying lemma 1 to expression (1.55) and considering equality (1.38) and
also the property of the transposition of indices t and n resulting from it,

m (n + m) It m) m
(n - m)!( + m)!

we obtain the following theorem.

Theorem 3.

S fJ-L 12
(n + )! W n+.-n - 12in

j,, (kr,)PT (cos )= V " (2' 1) X(n- m)' .4W

X j, (kl,) , j (kr) P' (cos 02), r 1 (1.56)

Expression (1.56) in the coordinates rj, 0e, rj
+ 1

1 0j+ 1 has the form

n (kjrj+) P ',(cos Oj,) --

S,,,j (kjrj) P' (cos 0+i), rj hl", (1.57)
P -pn+ (1.57)

jp(krj)P (cos 0')= F j(-'). "kjr+ 1)P..(cos t,
.C=0

ri+ h+, (1.58)

where 1 (p+ n)! (2 -- 1)iP - X
pn ji- I (p-m (2+) P X

p -- T+2 sin jj+1 /. . m
A J= Y161+0 °3P. (1.59)

If we first substitute (1.58) into the right side of (1.57), then per-
form the same operation in reverse order, we obtain

V F ( .F -"SF'F prnj Cnz' (1.60)

p=O p=O

where 6 n is the Kronecker symbol.

Let us note at this point that if in deriving theorems 1-3 we set m
and a equal to zero from the very beginning, we will obtain the theorems and

method first indicated in [6].
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Addition theorems for the function pm(cos 6)e i m . We will write these

theorems in the coordinates introduced in § 1.1, using the results of [25, 26].
The coordinates x., yj, zj and x!, yj, z! are related to one another by the

Euler angles 0., Xj by means of the following relations:

Sxj= xi cos X- y;sin zjcos 4j - z sin Ij sin j,

yj = xi Cos z + -yJ COS Zj COS 1j - zj cos y sin Bj, (1.61)

zj = Yi sin &j + zj cos 1j,

j Xj COS Yj - Y sin j, (1.62)
yi = -xj sin Zj cos j -- yj cos Zj cos 1j - zj sin &j,

zj = xj sin X, sin Bj - yj cos yj sin 4j + zj cos bj.
Substituting (1.1a) into (1.61) and (1.62), we obtain the relation between the
coordinates 0j, Qj and 0!, j+l

exp Pi + i - z1=

cos 0 sin i-sin 0 sin y ,cos + i sin 01 cos 7i 1
sill 0

cos O = cos O cos a. + sin 0J sin ?j+Isin a)

cos 0= cos Oj cos 1j - sin 0 sin jsinj (- j), / 29
cos Oi sin j + sin Oj cos Oj sin (yj - yj)

tanj +i = sin Oj Cos (Yj - X )

j==1, 2 ... v-,

whence [26, 25]

P, (cos Oj) e'i= - ,,,,,P (cos O;) e"'+, (1.63)
1=--n

nP"(cos O)e i+  bj) P' (cos ;)e1 '". (1.64)

Here

bt = (-1 (ne-x / (n + ) ! P (cos), (1.66)

j= l, 2 ... , v,--1;

Pn (z) are functions in terms of which the matrix elements of the irreducible
mr
representations TZ(G) of the group SL(2, C) are expressed.
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The function Pn (z) is related to classical Jacobi polynomials P(k'C

mr

as follows:

ni-- r m+r

(1 -z) 2 (1 -z) 2 pi"n-'l, "+r(z).- M (Z).

By analogy with the manner in which we obtained equality (1.60), it

follows from expressions (1.63), (1.64) that
n 17

i,, .,j - i.,,, j b I .,,. (1.67)

m im4
Addition theorems for the functions j (kr)Pn(cos e)e ,

imn
h (kr)Pm(cos 6)e

n n

From expressions (1.58) and (1.63) with the aid of superposition one can

readily obtain
j,, (kr 1) P,"/ (cos O) e m i =

= ' . K,,,,,,,jj, (kjrj+ ) P' (cosOj+0,) e'ili+',
=o01=-n (1.68)

where

K,(Tl,,z == b,,, , j

j= l, 2, .... v-1. (1.69)

Similar operations with relations (1.51) and (1.64) and also (1.64) and /30

(1.52) will respectively lead to the following expressions:

h,, (kjrj- -,) P' (cosO , ) e myi+, =

== , (,, ,,,J'v (ker) P r> h ', (1.70)

, (kjr+ 1) P' T'(cos ) eI".i + I

- Rp,,,,,,jp (k rj) P), (cosOj) eIJ , r hj+l, (1.71)
p=O=Ar:--p

where

pntij = Xpmj pnlmj, (1.72)

RpXnmj = b F,pmtj l1n1j,

j =, 2 ... v -- 1. (1.73)
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The following important identity follows from equalities (1.60), (1.67),
(1.69) and (1.72):

' K(,,,yK,-,,,,,= , ,  =1, 2..... --1. (1.74)

n= n= --n

§ 1.3. General Solution of the Problem. Components of the Electromagnetic
Field.

We will divide the dipole moment vector into two components (relative to
a sphere of radius bl): a horizontal one pl (P 1l = pl] sin G0 ) and a vertical

one p2 (IP2 = I cos )0). Then in the coordinates rl, 01, for rl < hl,
T00 will take the form:

co I

To ' ,,j, (hkr) P,, (cos 0~j e'"'" (1.75)
n= 0 n= -

where

-n(n- -1) ooA ,,for n= -1,

0) A2:I for i 0, (1.76),n-- aooA I, for /n 1,
0 for Iml>1,

it=O, 1, ...

Ata ) ikolP1I(2 2 l ) (' (kohi),

ikoo l pi (2n -F ) h (ko ) 1
n (n + 1) ' (1.77)

(1.78)
A2,,= iko I P2l(2n + 1) h, (kohz), 0 ,

hl '(1.79) /31

oo(1.80)

C (z) = zh, (z),

in (z) = -- ,, (z). (1.81)

If however r > h1 , then

TOO o td (korl) P :(cos ) ei ,
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where
-n (n 4 1)oodtl, for m =-1,

io t ,, for m= 0,
Loo ,, for m = 1,

0 for Im|>l,
n=0, 1, ...

i ( iko pl(2n + ) n (kohl),

ikoo I p I (2n 1 ,, (ko ,  n 1,
ik (nP + 1)+1,

t = (0, 0), i I p-- Ij. (kohl), O

S(z)= zj,, (z), 1,, (z) = lr (z). (1.82)

We will seek the solutions of equations (1.4a) in the corresponding regions
by taking (1.9) into account in the following form:

TOO+ ( B)h,, (kor,) P' (cos 01) e t ' for: = 0,
n=Om=-n

AX DI jrlp (hkor i ) j ((oss ) B+ (1.83)
n= Om=-n

for j]1, 2 ... v-1,

Aj,, (kr,) P-'(cos O) e"ip for j

n=om=-n

The expressions for T. when j = 1, 2, ..., v may be written in more com- /32

pact form if we set

S- . (1.84)

Then 0 .
Tj I A I,,, (kjrj) P ' (cos 0) e nj +

n=Om=-n

B,h,, (kjrj+1 ) Pn" (cos O ) ei"j+1,
(1.85)

j= 1, 2 ... v.

This is the expression which we will use hereinafter, taking assumption (1.84)
into consideration.
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Making solutions (1.83) satisfy the boundary conditions (1.6) and using
the addition theorems on (1.68), (1.70) and the property of orthogonality of
tesseral functions, we obtain:

qoj,, (kob ) A(, qh,, (kob,) B'Io) q, (kb,) A,

kqohb (k1b) B- - IlII II
•=01=--r

,, (kob,) A(,, + C (kob,) B nO,= 9 , (kb,) Al, +-

+ C (k b ) B i 1,

A m l 1 +qm lj -
1 hn (k j bj+ l ) B' n 

1 q1 + l 
1 Xq qj, (kjbj+ ) AK. (kbj ) B--n qj X

T=O 1=-'

X in (ki+ bj+ 1) A,,,+ + q h,. (ki + Ibi+ ) X

W - (1.86)
T=0 O l--'

T -01 -T

j 1, 2, ... , v 1; = 0, 1, ... .; m . -- n,. ... , n.

We write system (1.86) as follows: /33

(o) tJqin (k b1 ) A(I) q1hn (k1b1 )
nm- q0oh (kobl) nm qohn (kobl) X

X_=_ B 2 K n1 - Ao(kb)(1) ' (kob) () (kb,)
0==-? hn (k0b) ,

n (klbj) (kb1 )

X (kj)+l) (koo) A=,)
C=0 1=--c +'S (kjb1

U) qj+1-i (kbi+ (f1)(1.87)

in (k , ,,+) a)
n i ) C=O U

A..,,n (k-- BbjSm " +0

h,, (k(bj 1 ) 29
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;(kj- b J + ) 1 n(1  ) -

_ i _ (k_ _ _ bj_)n_ j -

n=O 0, 1, 2, .. : m=-n, ... , n; j=1 ... , v-1. (1.87)

It is assumed that

h,, (kib 4 ) =' 0, (1.88)

9f (kij +bj+ ) -iO, (1.89)
n-= 0, 1, ... ; j= 0, 1, ... V- 1.

Inequality (1.88) in the problem at hand is always valid by virtue of inequality
(1.4) and of H. Falkenberg's theorem [34], which states that the equation
h (z) = 0 has no zeros in the half-plane 0 < arg z < r.
n -

For certain n and j, inequality (1.89) may fail to be fulfilled. This
case will therefore be analyzed separately.

If in system (1.87) we make the substitution /34

A) (2j-1) 1 (n-rm)! h. (kjbj), j=,

B,--= Z "J/ (n+m)! i.(kj*j - I ) ' j=0, 1, .... v -- i;

A, = (n -m) (1.90)A I---, y (nXrn) ,

wherel5

h*b (kjbj) (b)(2n (. 91 )
(kbj)" j(2n+ -)!! (1.91)

15In analogous cases, other transformations of variables are usually employed
(see for example [9, 57] and others), in which the expressions hn*(kjbj) and

jn*(k.jb) in (1.90) are replaced by the functions h (ki.b.) and j n(k.b), re-

spectively. In addition to complicating the computational aspects of the
problem, such substitution loses meaning and does not lead to definitive
results when kjbj is the root of the equation j (z) = 0.
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it is rewritten in the form

r=0 1=-,

ZaI a + (2)a

Z ) )() -+: in -n - (1.92)

" = 0 1= -

r=O l==-

"=O I=--i

+ -(2j 2) (2j 2) ( ?) (2j)-- l n hr,,n u 2j rn- >,,

-=O 1=--c

it=0, 1, ... ; m= -- n .... n; j= 1, 2, .... -1.

Here

a2+J)_ 9J+ln(kJ+1
bj+l)hn(k]+lb z)

(2j 1) . in (k 2bjl) j (kjb i. )

a0
,,(kJ 

- l b j 
b 

" 1 ) h  ( k j b  
'

1)

jn ( 2kob) (O )
STI a .,,,2, j n i.

-C = _n (kob)o

-Inf ! X Xm i 1(, (k kb ) h (k i ,)

0 i 1;a(2 -i) _a (n +m) ! ( - l)

S( b b "b b

ct = (n - m) .! (

1 q-'-hh, (k lbj ) J (kj l 2) (-1) 0

h (kjbj4 )j (kjb ) K., j -, ] .... v- 2;



a(2I 1 (n - m)!(.- +1)! X

, (kjb )h* (kjbj) K
X ,' .kj_ Kn , ., j= 1, 2, v . ., v - 1;

× (k;+,b,) h, (kj b)
(2]2) (n + m) (t-)!
rr 2,+ 1 -- V (n - m )! (t+ l)!

(kj bj-- ) J (j - )

X (k-b+-) 1(k. j42 ) Kn i+l, j= =0, 1. ... , v - 2. (1.93) (1.93)+ ( jb+ 1)h, (k_ bj. "'" (1.93)

System (1.92) may also be written in the more general form:

2v- I

Z = a Z nms - h, (1.94)
i=0 '=--OI -C

s0, 1, 2v- 1; n=O, 1, ... ; m=-n, ... , n,

where the expression for a i)  for indices i and s satisfying one of theSZ anms
relations

i= j- 1, s=2 j, j=1, 2, .. , v-1;

i = 2j + 2, s= 2j, j , 1, ...- 2;

i=2j- 1. s=2-j--l, j=1, 2 ... , -1;

i=2j- 2, s=2j-l, j=, 1 ... -2,

is determined by formulas (1.93) and is equal to zero for all the remaining /36
relations.

To study the solvability and uniqueness of the solution, it is useful to
give the following form to system (1.94):

2v-1 2v--1

Z) -(.I)- N V a (1.95)
!=0 i=0 --0!=-

s=O, 1,..., 2v-1; n=O, 1,...; m= -n, ... , n.

In system (1.95)

MS s)Is+(- 1)S - Ois (1.96)

In the form of (1.95), system (1.92) permits a simple functional treatment.

We introduce into consideration the space 12 consisting of infinite three-

dimensional matrices Z = {Z )}, n = 0, 1,...; m = - n, ..., n; j = 0, i,...,
nm

2v - 1 c Z( )= 0 for Iml > n and with the norm
nm
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/ 2 -- I io

IIZII==/Vu N I zij) 2<co.
j=O n=O m=-n

The operations of addition and multiplication by a number are introduced
naturally.

Since any three-dimensional matrix from 12 contains only an even number

of constituent elements, by appropriately renumbering them it is easy to
establish the algebraic isomorphism and isometry of the spaces 12 and Z2 (the

spaces of the sequences {Zk}, k = 0, 1, 2, ...), whence it follows that the

space 12 introduced is a Banach space [35].

In terms of the space 12, system (1.95) may be written with the aid

of matrix operators W and T:
(W + T) Z= (,

(1.97)

where n) and a(i) are the kernels of operator W and T, respectively. Itis rZnms
will be shown that C 22, i.e.,

(1.98)

To do so, it is sufficient to show that

I I InM < 0oo. (1.99)
n=0 m=-n

since

,, const, Ci . (1.100)

Inequality (1.100) results from estimates (1.29), lemma 2 of § 1.2 and ex- /37
pressions (1.81), (1.93).

Similarly, we obtain the inequalities

S(2n + 1) A2 < const (2n + 1) l
IAajk<const Ikoh " jA < cons kohl1" 

which lead to the following:

S const, (2z + 1)!! (1.101)
33 con oh
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If we use the estimates from (1.101) and

I in (kob) < cnst lkob,

h• (ko *) (kob) (2n - I) !H

in (1.99) taking (1.93) into consideration, we will have

(])17 < const 6  n h), ' 2 Cl0 zn 1 ](1.102)
n=Om=-n tn="

The series on the right in expression (1.102) converges for b1 < h1 . Thus,

inequality (1.98) was proven under the assumption that the dipole is located
above the sphere of radius of b1 and does not touch it.

To prove the solvability of equation (1.97), we will have to use
Fredholm's alternative. The way to this is opened up by the theorem of S. M.
Nikol'skiy [36], which for our case may be formulated as follows.

Theorem. If: 1) W and T are linear operators defined in 12 and represent-

ing it in their part; 2) W is a reversible operator and T is a completely con-

tinuous operator, and 0 C 2 then Fredholm's alternative applies to equation

(1.97).

Let us consider the operators W and T.

Operator W places each Z C Z2 in correspondence with a certain U = WZ with

the aid of the transformation

2v--1

'lit= ZI nais (1.103)

The additivity of operator W follows directly from (1.103).

We will use Bunyakovskiy's inequality [35] in expression (1.103):

2-1 2v-1

ni l) (2 I I_ i" 2. (1.104)
i=O i=0

By virtue of the estimate Ia(n)l < const 6 (resulting from lemma 2 of § 1.2),

Stirling's formula and expressions (1.93), (1.96), (1.104), we have

2?v-- 1

3 Un V <const 7  zZn
i _ 0
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whence /38
(1 U <const, I Z II.

(1.105)

Inequality (1.105) indicates the boundedness of the additive operator W
and hence, its linearity [37]. From (1.105) it also follows that operator W

acts from Z2 into 12'

It will be shown that W is an operator reversible in 12*The matrix a(n) = (n)
The matrix a(n) n) of the transform W of (1.103) has the formis

-1 a 0 0 0 0
an-1 0 0 0

0 0 --1 a ... 0 0

0 0 a'-1 0 0
a ) . . . . . ( 1 . 1 0 6 )

0 0 0 0 ... --1 an'- )
0 0 0 0 ... a -1

Partitioning matrix (1.106) by dotted lines into second order square cells,
we conclude that this matrix is quasi-diagonal [38] with the determinant

- (1.107)
det = - (1 - aj )a+').

j=O

We will prove that

det n) = 0,
(1.108)

or the equivalent statement that

(21 j)(+1 , n==0, 1, . . . j=0, I ....v-1.
S- " "(1.109)

Substituting expressions (1.93) into the left member of inequality (1.109), we
obtain

- h,, (kjbi+ ) bi- (k) -bj _-) (1.110)

where

A q +j,, (kj ,b+, )" .,(kjbj+,) - qjl,,(kjbj ,)' (ki +,bj +,. (1.111)
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In view of the validity of inequality (1.88) and of the assumption (1.89), /39
it follows that relation (1.108) is equivalent to the following:

A /)- :0. (1.112)

We will prove the validity of (1.112). To this end, we will consider the
following auxiliary problem.

Let there be a sphere of radius bj+1 (medium j + 1) in infinite space.

The following scalar problem of mathematical physics is posed:

ATj7'+-kTj=0 (medium j)

ATj+l+kj+ 1 Tj+I1 =0:(medium j + 1)

qjT qj+17 )+1
d (rTj) 0(rTj+l) for r=bj+1,
dr dr

li r - ik 0. (1.113)
r W O r

Here the expanded equation for medium (j) is identical to equation (1.4a).
System (1.113) is homogeneous, and by virtue of the uniqueness theorem [39] has
only a trivial (zero) solution, i.e.,

Tj 0= Tj+. (1.114)

We will seek the solution of problem (1.113) in the form

T = a,h,, (kjr) P,, (cos 0),

T"j -. = b, j,, (kj + r) P,, (cos 0).
(1.115)

Making expressions (1.115) satisfy the boundary conditions (1.113), we come to
the following algebraic system for coefficients a and b :

n n

I a,,qoh,, (kbi1+1) - bq j, (kj+ bJ+) = 0, (1.116)

a,,C , (kjb j+) - b, n(kj+,bj+1) = O.

It follows from equalities (1.114) and (1.115) that a and b can be onlyn n
identical zeroes. Hence, it follows for the determinant (1.116) that

(1.117)
qh, (kjb,+,) -- q+l, (kj+ib+. 1 ) 10.
C1 (kjbj+ -- n (k1+)Ib+ 1)
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Since the left member of expressions (1.117) is nothing but A j), determinedn
from formula (1.111), inequalities (1.112) and consequently (1.108) as well may be
considered proven.

(n)It is easy to write the matrix a(n), the inverse of matrix (1.106): /40

-1 a O 0 ... 0

a~,--1 0 0 0 ... 0

0 0 0

0 0 a -1 ... 0 0
) .0 -- ( - ..(1.118)

0 0 0 0 ... -1 a

0 0 0 0 .. a -1

It follows from expressions (1.118), (1.106), (1.108) that W is an oper-

ator reversible in 12

Operator T places each Z C 12 in correspondence with a certain V = TZ with

the aid of the transformation

2 -1 I

vrsn-= Z' ifai,"",s" (1.119)
i=O r=01=-t

We will find the conditions which must be imposed on the kernel of oper-

ator T in order that the latter act from Z2 into Z2 and at the same time be

completely continuous.

From Bunyakovskiy's inequality applied to (1.119) we obtain the estimate
2v-1 m n 2v-i

nV= I,",d, l, (1.120)
s-O -n=Om=--n i=O I=Ol-= -

from which it follows that

ST I< V 1 I I I I I S 12,
s=O n=orn=-n 1=0 r=o=-- (1.121)

where IITII is the norm of operator T.
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From inequality (1.120) it is easy to obtain the condition

Sams <'Po, (1.122)
n =0 m =-n- =0 t=-r

which is sufficient for the statement that operator T acts from 12 into 12. /41

We will show that condition (1.122) also guarantees its complete contin-
uity.

We introduce into 12 the linear operators Tk (k = 0, 1, 2, ... ): V = TkZ,
realizing the transformation

2V-1 

Sntin = "Zl ainrts, (1.123)
i=0 =OI=-r

where ()
where aTinms for n k,

0 for n> k. (1.124)

It follows from (1.124) and (1.123) that no matter what Z 12 is,

V(s) = 0 when n > k. Consequently, the set of values of each of the operators
nm
Tk is finite-dimensional, and therefore operators Tk are completely continuous.

By analogy with estimate (1.121) it may be shown that

2,T -T, < 2', N Y . (1.125)

s=O n=k+l m=-n l=0 T=O0=--,

By virtue of inequality (1.122), the right member of expression (1.125)
tends to zero when k - m, leading to the relationship

lir I T - T II= 0.

It follows16 that T is a completely continuous operator. Obviously, condition
(1.122) will be fulfilled for system (1.95) if

(2)- 2) 12L J mja moo, j=0, 1, ..., - 2; (1.126)
n=O m = -n r= I

(1.127)
LV a i <o2j o, j=0, 1 ..... v--2;

n =O r =--n =0t = --

16 In view of the completeness of space 12.
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_L = m,2 <00, j=O, 1, . .. , v -l ; (1.128)
n =0 m = O-t= I-t

L -. 3_, , + o. j=-- -O, 1. .. " ., -1. (1.129)
n =O i =-n-- T I =--

We will prove inequality (1.126). Using the estimate /42

IP"',,, (cos ) l< 1,
(1.130)

resulting from the unitarity of the matrix [26] of generalized spherical
functions of n-th order, the relation

I Pn, (cos ) < 1,

resulting from the integral representation (1.42) with consideration of the
property of the associated Legendre function relative to the superscript, and
also lemma 2 of § 1.2, and inequalities (1.29), (1.32), we will have

L(j < const8 ( n) X
n=Or=o

Iki+lbj+2 12"I ki+lhj+2 121n- ] (2n + 1)! (1.131)X ij+,bj+, |'2" (2,c + 1)!.(2| - , I + 1)!! 1 1

In the course of derivation of relation (1.131), an estimate for the

function Pm(x) finer than (1.30) was used, i.e.,
n

(X l < (n-m)lS(n-rn)--!' (1.132)

which is obtained from the representation [26]

Pm (x) =i 1/(n + n)! P.o (x)

and inequality (1.130).

Dividing the sum with respect to T in (1.131) into two parts: T < n and
T > n, performing the appropriate substitutions by analogy with the proof of
lemma 4 of § 1.2, we will come to the validity of inequality (1.126) under the
condition that

bj+ 2+h.j+ < bj+, j=0, 1, ..... v- 2 . (1.133)

Inequality (1.133) imposes limitations on the arrangement of the spheres:
they must not touch each other.
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We now turn to the proof of inequality (1.127). From the estimate

qjl+hn(kj+lb/j+1)](kj+ bj+ 2) Cn (kj+tbj+ 1),) (kj+bj+ 2)

qh, (kjbj +b1) j+(bjI)i) h, ( ,b+)

obtained from lemma 2 of § 1.2, we have

' 4.1 (constglatly . (1.134)

Relations (1.134) and (1.126) demonstrate the validity of relation (1.127).

Inequalities (1.128) and (1.129) are proven exactly as expressions (1.126)
and (1.127), respectively.

Thus, conditions (1.126)-(1.129) take place, and therefore T in system /43

(1.97) acts from 2 into 2 and is completely continuous.

Hence, all the conditions of Nikol'skiy's theorems have been fulfilled, and
consequently, Fredholm's alternative applies. We will formulate it with
reference to the problem at hand.

Fredholm's Alternative. In order for equation (1.97) to have a solution
for any (D, it is necessary and sufficient that the homogeneous equation

(W + T)Z = 0 (1.135)

have only a trivial solution.

Before proving that equation (1.135), corresponding to the homogeneous

system (1.92) and (1.94) (when (i) 0) has only a zero solution, we will
nm

prove the following theorem.

Theorem 1. It follows from the condition Z = Z(s)) C 1 (s = 0, 1,
nm ''2

2v - 1; n = 0, 1, ...; m = -n, ..., n) that both the series (1.83) and the series
obtained fromn them by differentiating with respect to spherical coordinates a
finite number of times converge absolutely and uniformly.

Proof. It follows from the condition ZC 2 that the coefficients Z S) are
2 nm

absolutely and uniformly limited, i.e., IZnS)I < constl 0, which according to

relations (1.90) and lemma 2 of § 1.2 leads to the following estimates for the

coefficients A ) and B):
nm nm
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IA ;;"I< const, V (n-m)! (2 n  1)11 j =1, 2, .... ;
. (n + m)! Ikkb+ln 1

o (n + m)! (2n,+ 1!! ' 0, (1.136)

On the other hand, from the recurrance relations for associated Legendre
functions and their derivatives one can deduce the equality

d P-(cos)- [pnm+' (os)- (n m 1)(4+ rn)m-(cos6)], (1.137)

which by virtue of inequality (1.132) gives

P (cos o) <constlan 1/(nm)! (1.138)

Differentiating the right and left members of expression (1.137) (s - 1),
times and using inequalities (1.138), it is easy to estimate by mathematical

induction the derivative of s-th order of the function pm (cos 0):n

-s, (cos 0) < const,4 n, V/ (n + m)! (1.139)(n-m)! (1. 139)

Relations (1.136), (1.139) and
ds j.(kj) < const, ns jIn

drs j,(kyrj) <const,n (2n + 1)!!

-dr (kfrn) <const I lkr i (1.140)

obtained like inequalities (1.29), make it possible to estimate the derivative

aSl+S2+s3 of the common terms of series (1.83):
arSl S2,,s3

ARn 1J (kjr) P .(cos O) eLm' < const,7 as+,+s.

ar3+s_ Bnhn (kjr + ) P (cos 9j) em'?J+1 <const 8 iS+S+s's

XI r+l In

(1.141)
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It follows that the series obtained from the expressions (1.83) by differen-
tiating sl, s2, s3 times with respect to the coordinates rj, 0., &j respectively

are majorized by the convergent numerical series

I TA < const,9  b r IasK.L+l , j= 1, 2,

since for j the regions r. < b. and rj+l > bj+l. For T0 , an analogous result

is obtained from estimates (1.101) and (1.141). Thus, the theorem has been
proven.

We will now show that equation (1.135) has only a trivial solution in

Z2 .

We will assume the opposite, i.e., that in Z there will be a Z =2 nm
not identically equal to zero and at the same time satisfying equation (1.135).17

This means that there exists at least one j = j0 for which (nm) 0, andnm
hence, by virtue of relations (1.90), also

(j0j  * 0 (1.142)nm

or

B 0 (1.143)
nm

System (1.135) corresponds to a homogeneous boundary value deflection
problem, which in the absence of a source and with the condition of radiation
at infinity, and also owing to the contribution of the tangential components of
the field and the theorem of uniqueness of the solution of the homogeneous
system of Maxwell equations in a multiply connected region has only a zero
solution.

Hence, by virtue of the theorem just proven, it follows that in the first

medium, for example, T1  0, or, what amounts to the same thing

I IXA.) " (kr,) P (cos O) elmn m+ h. (k,r2) Pm (cos 0 2) e m" = 0. (1.144)
n=O m==-n

17The two dashes above the symbol will denote the quantities pertaining to the
homogeneous boundary value problem (1.135).
18 In reference to this question, see for example [9].
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We will apply the addition theorem (1.70) to the second sum in (1.144) and
change the order of summation. 19

..j.n, (k,r,) + h. (k,r,) I ff pKIm- Ix
n=Om=-n P= 0X=-p

X PnX (cos 0 ) elx ' -= O.

Hence, in view of the orthogonality of the Tesseral functions, we obtain

Aj. (k, r) r h. (k1r,) I IW () K(-')
p=o X=-p (1.145)

Since the functions jn(z) and hn(z) are linearly independent, identity

(1.145) can take place only provided that

X'1 = 0, (1.146)

p=o ,=-p (1.147)
Multiplying equality (1.147) by KlZnml, then summing it over m from -n to n

and over n from 0 to infinity (using formula (1.74)), we will obtain

(1)
(i) 0 (1.148)

The following theorem will be required for further consideration.

Theorem 2. It follows from the condition J) j) that (j+l) (+)
nm nm nm nm

Proof. Assuming that A (0 ) = 0, condition (1.148) reduces system (1.86) to /46
the following: nm

q+ 1),j (k+ q h (kj+b+1X

:=0 I= -'r

j 1, 2, .. ; n=, 1, .. .; m - n, ... , n
(1.149)

Excluding the coefficient B(j+l) from system (1.149) and considering that

the Wronskian of the functions n(z), Cn(z) is

19The validity of this operation is guaranteed by theorem 1 of the present
paragraph.
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Z (y. (;Z-)) k n 9(1.149a)

we will obtain X(j+l) = 0.
nm

The same identity (+) = 0 is obtained from system (1.149) by excluding
nm

(J) by the same method as was used to obtain relation (1.148) from (1.147).
nm

The theorem has been proven.

From the theorem and equalities (1.146), (1.148) it follows by induction
that for any j = j0

We have reached a contradiction with the assumption of (1.142), (1.143).
Thus, equation (1.135) has only a trivial solution, and system (1.97) is

uniquely solvable in 12"

Let us note at this point that by analogy with the reasoning in [40, 41],
pertaining to 12, it can be shown that system (1.97) or, what amounts to the

same thing, (1.95), is also solvable in 12 by reduction.

If follows from the above that solutions (1.83) via relations (1.2) satisfy
the Maxwell equations, the boundary conditions on the interfaces, the Sommerfeld
condition, and hence, realize the solution of the problem formulated in 5 1.1.

Let us now consider the case

n' (kj+tbj+,)=0, (1.150)

i.e., remove the limitation (1.89) imposed on all the preceding discussions.

According to Lommel's theorem [42], the equation Y'(z) = 0 has only real
n

roots. Therefore, the question of unfulfillability of inequality (1.89) makes
sense only when kj+ 1 is real.

Let the following equality be valid for a certain n = n0 and j = j0:

So(kjo+ 1bjo+,)= 0. (1.151)

Without detracting from the generality of our arguments, we will postulate
that j0 > 1. Then, transposing the equations in system (1.86) corresponding to

j = j 0 , n = no, and taking (1.151) into account, we will write them as follows:

B(' = 0 AO+ _ 4, (kjob+ i) A(oKnomclj0 +
Co,(klb+io ) r=o=--rno (kjo bjo)0--

+ C(kjb+ 1) + omd +, (1.152)
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A(+1n qoh " o(l(kjbj+) B(o) Ij..(kjo +)

qj1+ I+n, (k. + Ib1 + ) n m ql+ 1 Io(k, le+1)

X AI--Knomj. _ no(kio+bj0+) +o+ )KY,(,io+i. (1.152)
A°=01=- )K jo o b (k+lIbjO+ 1) ,=o , o+ (1.152)

With the a
With the aid of the substitution (1.90) and consideration of relations

(1.152), system (1.95) for the case (1,.150) will become

Iv-1 2v-1

Znm ,,.+ 'I I I*- (1.153)
1=0 1=0 r=ol=-r

s= O1, 1 ... , 2v - 1; n= 0, 1, .. .; m= - n, .... n,

where(a (b( 81) (1 - -o) - (b- i ) nn,b(n) = a(s)8 s
IsO nO Is+(--1)

(ano +') for s = 2jo+ 1,
a~= 0 for s= 2jo,

a(s) for s *2jo, 2j o + 1,

a2o+l) qjh. (kjbj+ 1) j (kjbi+ I)
qj+ jn (kj+ lbj+) h n (kjbj) flo'

anm(i) is defined for indices i, s, not respectively equal to 2j0 - 1, 2j;
Znms* 

(i)
2jo+2, 2jo; 2jo- 1. 2jo+ 1; 2jo+2, 2jo+l as a lnms according to expressions (1.93),

for the other relations of i and s as follows:

a(2 -1) *_ ('C - 1)! (n + m)!
"tlnom2jo*=-- (c + 1)! (n - m)X

x , (kibj+ )h (kjb,) K , (1.154)
Cn (kjbj+1) I, (k bj+) ml Jo no'

(2j0+2) ( - ) ! (n + M)! /48aInom2j1o* (t + I)! (n - m) X

X n (kj+ Ibj+ 1) j. (kj+ lb + 2) -) .

n (kjb + 1) jn (kjbj + 1) m+

t"lrm2+l= ( + )! (n- m)! X

qjJn (kjbj+ 1) h* (kjbl)

qJ+ iJn (kj+ Ibj+ 1) h (kjbj) nmin njo nno,
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/48

a(lnor 2+) - ( + I)! (n --n)!

X h, (kj+Ibj+ 1)j: (kj+ibj+ 2)

jn(k+ Ibj+ 2) h. (kjbj) nm'JJ+1 11 n.

(1.154)

If by analogy with (1.135), system (1.153) is written in the form

(W, + T)Z = ¢ (1.155)

where W, is an operator with kernel a n) and T, is an operator with kernel

a(i )  it can be shown that W, is a reversible operator and T, is a completely
1inms

continuous operator in Z2. For this it is obviously sufficient to show that

det 0 ( { s )' (1.156)

a(nom s* 12 < 00.

=01=- (1.157)

We will prove the validity of condition (1.156). It is easy to see that

(n0)

the matrix a, will also be quasi-diagonal and may be obtained from matrix

(1.106) a(n) for n=n0, if the j 0 cell of the main diagonal is replaced by the

determinant --1 a(2+

01 --1

Moreover
v-il

det a. l u (1 - ajf)a.++ ),
e=O (1.158)

where the prime of the product with index jo means that the time corresponding

to j=jo has been eliminated from the product.

According to inequality (1.108), the validity of relation (1.156) follows

from (1.158). If however, condition (1.151) is fulfilled for a given nO for

46



several j: jo, jl, ... , jp, then, applying all of the above reasoning without

any substantial modification, we will obtain
v-Il

det a("t) n (o. t' ..... Jp)'( (1-a2';a ) *O,
j=o

i.e., relation (1.156) takes place in this case as well.

In order to prove statement (1.157), it is sufficient to show, as can be
readily seen from expressions (1.154) and inequalities (1.126)-(1.129), that

)I h (kio bho) Knomdjo I < 00(- (1.159)

jj .+ I(ko+jb+ 2) K.om,,jo +1 I< 00 (1.160)

Thus, relation (1.159) follows from the estimate

Sn_== "h*(obo )Knw const 2 I (22 -n 1)!! kjh+ 1noI
(t+ 1)!O In < mttnj.= I k1 -ono I + kjobjo

(1.161)

obtained with the aid of the same inequalities that were used in proving
statement (1.122). The convergence of the series to the right of the
inequality sign in (1.161) is established by means of d'Alembert's criterion
under the condition hj0 + 1 < bj0 , which always applies.

Relation (1.160) is also valid by virtue of the following estimate:

., z-. ( + ,1.c(kJo+,°jo+2) K(- ,+,I<

2konst 2 [ ko lbj+ I kJo+ h.2 I"r-no+
< const2 (2c+ 1)!!(21 - no I + 1)!!

If several n exist for which equality (1.151) becomes an identity, then
for each such n, system (1.86) is rearranged by analogy with the above discussed
case of (1.152) when n = no, and all the existence and uniqueness theorems hold

for this case as well.

Let us note at this point that in the course of transformations of system
(1.86) to the form (1.152), it was assumed that

JnO(kj0+ibj0+1 ) + 0, (1.162)

which is always valid.
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Indeed, an assumption opposed to inequality (1.162) together with inequality /50

(1.151) would mean that (kj0o+bj0+1) is a double root of the equation n0 (z) = 0,

which is incorrect, since cylindrical functions have no multiple roots [42],
different from zero.

This completes the case discussed above.

From the very beginning of the solution of the problem, in order to avoid

cumbersome operations in constructing the solution and in its validation, the
desired Debye potentials u. and v. were combined into a single generalized3 3

potential T. (1.5) with the aid of appropriate notation (see reference on p. 14).

However, later on, in order to write the component intensities of the electro-

magnetic field in each of the media, we will have to separate again all the

expressions under consideration. We will therefore agree to provide all the

quantities pertaining to the potential U with the subscript (u), and those

pertaining to V, with the subscript (v). In this case, for example, the

solutions of system (1.95) and the coefficients A (j)  B j) expressed in terms
nm - nm

of them, depending on the type of potential considered will have the form of

either Z(j)  (  B(j)  Z(j)  (j)  B(j)

nm(u)' nm(u)' nm(u) or nm(v)' nm(v)' nm(v)'

Then, taking the designations (1.5), (1.8), (1.75)-(1.85) into account, we
have:

Uoo-.= A,()j,,(kor)Pr (cosI)e"m for
n=0 = < =ht

Voo = A (v),,j. (korl) Pm (cos ) etm  (1 163)
n=O m=-1 (1.163)
CO I

Uo00 =, n 1) etm(,U00  I , (u)hi (kor1 ) P" (cos O) em
n=O m=-l r, > hj;

m 1 for

Voo = ~ ~ n(oI )h, (kor,) Pn (cos O) e
n=O m=-1
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n=O m=-n

oV0  B(" (v)h, (kor) P (cos Oz) elm' ;
n=Om=-n

M n

+B (uhn(jrj+)P (COsj+I)eLm j+ 1, (1.164)

V. r ) (.) j,, (k rj) P (cos ) e" mj +
n=Om=-n

nm ()h (kjrj+ ) P (cosO+) e m+ , (1.164)

S, ' () v; B~ - B) ()= 0. (1.165) /51

Using relations (1.2) from expression (1.163)-(1.164), we will obtain the
components of the primary E(00) , H(00 ) and secondary E(0s) , H(0s) electromag-
netic fields in medium 0, and also, by means of addition theorems (1.70)-(1.71),

the field vector components E ) , H of medium j. Since we will need only
the vector components E H(0s ) , we will give their expressions below:

M n=m n

12(0E -( B ()m-Cn (kor.) ir (0,) e lm,
Sn=O m=-n

E ( ") .--L ' B~?m(")m n(kRor 1 ) i" (o0)eiin o- "

n=O =-n

1 n am=-n

Eo(0s. BA (nMh (kol) . (0I) eim,
n=Om=-n

(1.166)

H(S )  B on(n_ +1)hn(kor,)P,,(cosO1)emi,,
4rl 9n=m=-
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n

H (Os)= 0  B i (mh, (kor ) ir' (0) eim, +
1 n=Om=-n

,- , . (j.n (kor) W (Q) eIn l
mn

S1 I B1 v.)C (kor) ,m (0) e"',n=o m =-n

Here /52

'n ( ) = -- P ( ( (os O),

S, = (cos 6)
sin

(1.167)

aO, 0( are defined by formulas (1.1).

We will find the expressions for the components of secondary field (1.166)
in the long-range zone, using representations of the functions hn(z) and E' (z)

asymptotic with respect to the argument

iz
h5 (z) - i (n 0+ )

Z

(z) i-nez (1.168)

50



and introducing the following notation:

S2(01 = B Un>i nr(62~)r (cSl
n=Om=-n

s3 (o,, p,)= BnMo (Fi-nmxn (,) em9,,

n =O m = -n

S ,(,, ,)- B ()i' "m" (,)e'm '

n=Om=-n

S5 (0 , TO Bn(O) = B 0 m (1t lm? ,
n=0 mn=-n

S6(01, cPl)=B ,,m (ti)l n ( + 1') Pnm (cos 0) e ml,
n=Om=-n

X0 so

(1.169)

Then, after suitable transformations taking into account relations (1.1), (1.3)
for the long-range zone of medium 0, we will have:

(Os) esl k°r, o e' ,
Er 2 S, (01 , H), .(O k B)e S(, ,),

rl ikor ikor2

E
( s )  

elr'-- [S2(01, T) + ixoS 3 ('
0

, I)],

H s)~ ±!L S41(, )l+S5(o6, T)EH ) eF1" 
/53

E (Os) -- [iS4 (
0, ,) XOS, (0,, ,t)],

HO s) r S %o i. "
1 ( (1.170

The following relations may be obtained from expressions (1.170):
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E (0) x Hs) E ( s) =
e1 0 1 rI

Es= -x (Os) H( s)  = 0 (1.171)
9I =-x0l ' rl

whence

E(0s)E(s ) + H( 0 S)H( 0 s) = 0 (1.172)
e1 1 01 1

i.e., as in the case of a single sphere, in the long-range zone approximation, the
electromagnetic field of a nonconcentrically layered spherical particle also

has a transverse character, and the electric and magnetic factors are mutually

perpendicular.

We will mention a-number of simplifying features for cases of vertical

(e0 = 0) and horizontal (a0 = -) dipoles that are most important in theory and

applications.

Verticle Dipole. By agreement2 0 on the choice of the coordinate system

X1Y 11 in this particular case we have = -. Taking this into consideration,

together with the fact that pl = 0 in expressions (1.76)-(1.77), (1.82), we will

obtain:

A (n+) (o)= O,

Ann()= iko P 2 1 (2nl+l1)hn(k)no, (1.173)

t° (., = io 'k" P21 (2n 1) j,(koh ,o,
ht (1.173)

lnn Mf = 0.

It also follows from relations (1.173), (1.90), (1.93) that

D (i)VE=0. (1.174)

Condition (1.174) converts system (1.97), corresponding to potential
V, to homogeneous system (1.135). Since it was shown previously that equation

(1.135) has only a trivial solution in 1 , then Znm(v)  0, whence by relations

(1.90) it follows that

2 0See page 12.
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The quantity ' D(O, 0), calculated in the direction of the incident wave,

is called the backscattering cross-section a' B Consequently, we have

I = (l S7 (0, 0) 12  I S8 (0, 0)12).
o (1.206)

Having transformed expression (1.206) by using for this purpose the values

of functions (1.167) Tm (6) and r m() at zeron n

for m=--1,2

n(0)= (0)fo n (2 1)(1.207)

0 for Iml f 1,

obtained with the aid of representations (1.137), and

'" () = 21os [P + 1(cos )

-(n -m+ 1) (n nm) P, (cos 0)]

(1.208)

and also the identity Izi+z 12 + zi - 2 2 i 2 +21zz 12, we will have

, ;-n ( o _ o , _(O) )J2 +
OB 4o ' oBo,
k0 n=1

+ -n i (n + 1) (I I - n-Of)
n= 1 (1.209)

We introduce the notation:

(1) 2in-1 slgn m /(n + m) In (n + 1) j(o)
nm - ko (2n + 1) (n -m)! nm (u) ,

(1.210)
m(2) 2in-o /(n+ m) ! n (n+ 1)B(o)

nm ko (2n + 1) (n nm vM

Then, expression (1.209) for a'B will take the. form

002

CB 2k2 m= 11 n= 10 ,I n=1 
(1.211)
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we come to

0 k20 n=1 m=-n

In terms of notation (1.210) the expression for y 0 will assume the simple
form

n=l m=-n (1.216)

Directly following from the above are the expressions for the indicatrix

and effective aiea of scattering:

r(01  I S7(01 , yj) 12+ ISs(0B, y1) 12

7k2 2 (2n + 1) ( (1) 12 + I E(2) 12)
n=1 m=-n

(1.217)

05 n

n=1 m=-n

Another important characteristic of the particle under consideration is

the effective attenuation cross-section 2' 21 To calculate it, according to the

optical theorem [44-- p. 204, 48--p. 72], it suffices to find the imaginary

part of the amplitude of the electric field in the long-range zone, observed

behind the particle in the direction of polarization of the primary field.

More accurately, considering the adopted notation,

4
a2 = 4 (--Im)S7(7, 0).2 - k0 (k 0 1 )2 0.(1.219)22

This in turn, by virtue of the relations

'Cn' (X)= -7'n (r) = (-1)"C' (0), (1.220)

2 1Referred to b2b1
2 2Usually 02 is determined by means of the surface integral over a sphere located

in the distance zone (see for example [47, 10]). The optical theorem essentially

consists in transforming this integral by the stationary phase method to the

form of (1.219).
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A ( j )  0 B_ >) ; j= 1, 2 ..

(1.175)

Horizontal Dipole. Here it is necessary to set Ip2 1 = 0, which, in view

of relations (1.79), (1.82) leads to the equality

A2 = 0,1

t2n = =0, (1.176)

or, if the notations in (1.76), (1.82) are considered, to the following:

A no' = 0,

t(o = 0.
(1.177)

These are the only simplifications in the general expressions of the
problem that can be made in this case.

To conclude this section, let us note that if the relations of parameters
k. and b. are such that equality (1.151) applies, all the expressions (1.163)-

-(1.165) will remain valid if one assumes that the unknowns Z ( ) are found from
nm*

system (1.153).23 The expressions relating to coefficients A j  B j ) with thenm*' nm*

quantity Z( j ) will remain the same as before. 2 4
nm*

§ 1.4. Spheres Arbitrarily Located Inside One Another in a Field of the Plane
Wave

It is well known that Maxwell equations can be reduced by means of the
substitution

E ( j ) = curl curl 1I(j )

HO) = a. curl I() (1.178)

to the equation

An(u) + k)fu) = 0.

2 3All the expressions for this case are provided with an asterisk (*).
24See relation (1.90).
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Here E(j) is the Hertz vector of medium j, and A is the 3-dimensional Laplace

operator. The Hertz vector, corresponding to the primary E 
0 0 ) , H (0 0 ) field of

a dipole radiator with moment pl has the following projections in the X1Y 1Z 1

coordinate system:

oo )== , 10 , 0, ,
(1.179)

where

70°= PI iR R= /h2 -i - 2rhl cos O

(1.180)

The solution of the problem formulated in the title of the present

section will be obtained by means of the limiting conversion of the solution

already discussed in § 1.3 for the case in which the source of electromagnetic

waves is a horizontal electric dipole with moment pl (see Figure 1.1). To this

end, we will direct the dipole pl to infinity without changing its orientation

(parallel to axis X1).

We will also correspondingly transform the expressions for the electromag-

netic field compounds. Thus, if in the expansion

17o - I Pliko (2n - 1) n (korI) h (koh) P, (cos .),

obtainable from expressions (1.13), (1.180) for r < h1 we separate the princi-

pal term of the asymptotic series for h I - with the aid of representation

(1.168), we will obtain:

170 I p, l O (2n 1) i-"j. (kor) P, (cos 0,).
I .=0 (1.181)

Since the series on the right in (1.181) is merely the expansion of the plane

-ik0ricos 1
wave e1 , the expression for 10 may be written as follows:

170 - Eoe- i°  (1.182)

where
Eo I1 hi (1.183)

Using expressions (1.182), (1.179) in (1.178), we will have in the given

approximation the following component of the primary field:
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EX(o'o) - koe- O, X'O )-01 HZ,-

Ey0 ,- O, E!O, - O, HyT) --ikxOEOe - °Z,  (1 .184)

and also the relation between them

E., -x oy •. (1.185)

Formulas (1.184), (1.185) show that we have obtained a plane wave propa-
gating along the negative portion of axis Z1, whose electric vector is polarized

along axis X1 (horizonal polarization).

We will now assume that the components of the primary field have the form

E.0 ) = kEoe '" , Ho_ = Hz() = o,

E(0 ) EOz,) -0 H' --ikoaoEoe- t
a
z'
, (1 .186)

which differs from the form of (1.184) in that the sign ~ has been replaced by
an equality sign. Hence, it is obvious that in order to obtain the solution of /56
the general problem of scattering of a plane electromagnetic wave by the body
under consideration, it is sufficient 25 in all the expressions of the solution
for the case of a horizontal dipole (§ 1.3) to separate the principal terms of
the asymptotic series for h1 - =, which after suitable transformations by

determining factors of the type of (1.183) will give us the desired solution.

We will introduce the following notation:2 6

g,-= 2n + 1 -- n 2n+ 1
n i n(n+l) ' n(n+l) '

-n(n + 1) Poogn for m=--1,
A(o) oo for m=l,

0 for Iml#1,

~(0) / (n + m )! X(O)
nm-- y (n--m)t nm,

in (kob 1) (o =,
hn (kob.) Jn (kob,)

+_ (kob,) " o

n (k b,) h. (k,bl)

0 , j>1.
(1.187)

2 5By virtue of the linearity of the equations and boundary conditions of the
problem.
26Concerning the use of braces, see the reference on p. 14.
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Then from relations (1.77), (1.76), (1.168) we will obtain:

A,, ,Eog,, Aon . ~EOnm ,

X(,no -E 0 o , , ( ~ EaJl4n(m) (1.188)

If in system (1.95) we now switch to new unknowns in accordance with the

formula
Z(j) U)
Zm -5oi= nm, (1.189)

then, taking relations (1.188) into account, we will obtain

2v-1 2v-1 o

,-nm, , +-4 T's-- nm. (1.190)
1=0 1i=0 O=--

Like (1.95), this infinite system is uniquely solvable in 2, since the

kernels of the operators have remained the same, and for the free term, by

virtue of the estimate (resulting from lemma 2 of 5 1.2)

41 2, < const, I ( /.

and inequality (1.98), CZ 2 is valid.

According to the relations of the equality (=) and equivalence (~) signs

specified above, the solution of the problem for the case of a plane wave in

each of (v + 1) media will be determined from expressions for the case of a

dipole radiator if A(  B( )  B (j )  is replaced by EoA( ,)' nmm) EoBO)
nm(u)' nm(u)' nm(v) nm( nin(u)

EoB(m(V) respectively in these expressions. The coefficients Anm , Bnm are

related to Z'J' by expressions (1.90), (1.189), and subscripts u, v have the
nm

same meaning here as in symbols without the tilde (see p. 50).

The components of the seconda-- f~i (1 170) M n the ann-roximtion of the

long-range zone of medium 0 are similarly obtained.

Thus,

E (Os) Eo 1, j) () _ eok  , -6 ,r Eo- S1 (o,, 5), , o S(O,, ),
rl ikr ikr

E (0s) - Eo e (, ,) -iko S(, , p,),i -ri

f.(Os)- E ,ko (0, 1
61 o ---- 5(, %)- ~ s4 (o,, ,) ,

51
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eoS o ' i  1  i(,, ] ,1

01 (1.191)

where

i: ,,(E) (,,)i-" n(n + 1) P'(cos0) e'"

n

, 2 1? TO BaY, i-n'Com  "(0) e' ,
n=O m=-n-
n =- n-

n

S3 (01 ' ) I o BT22L ((v)jn UI m (m e

=,n = --n

n=0 mn=-

36(Oi, ) 5 (v) i-"n (n -j 1) P (cos in) e' Tm

(1.192) /58

It is evident from expressions (1.191) that the relations (1.171) also
apply when the primary field is given in the form of a plane wave.

Let us note at this point that all of the above applies under condition
(1.89). If the latter does not hold, however, i.e., equality (1.150) is
fulfilled, the only change which must obviously be introduced into the above

discussion consists in determining the unknown coefficients Z ), not fromnm
equation (1.190), but from the following equation:

2v-1 2v-1 *
2(s cn I Y, Y

j=o -o =oL=- (1.193)

(n) (i)where a l and anm are defined by expressions (1.154).
is* Tnms*

§ 1.5 Electromagnetic and Radar Characteristics

In this section, with a view to specific applications, we will consider
k0 to be a real number.

The transverse character of the electromagnetic field scattered by the
body under consideration in the long-range zone of medium 0, established in
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§ 1.3, §11.4, leads to the fact that the corresponding Poynting vector

(0 ) (0s) (0 )
P = E X H (1.194)

(0 )
has only the radial component pr in the given approximation. Therefore, the

intensity of the scattered field I'(1 1, 1) in the long-range zone is defined [43]

as the absolute value of the real part of the time-averaged scattered field

directed along the radius of the Poynting vector, and is numerically equal to

the energy transferred by the wave per unit time through a unit area of the

surface normal to the direction of propagation of the wave. This definition

is equivalent to the following formula:

(FO,)= R -i- P(Os)dti
o r (1.195)

where T = 2-, w having the same meaning as in expression (1.1).

Substituting relations (1.171) into (1.194), we come to the expression for

(0 )
P

p(os) E(0S)H(0s) - E(0s)

r = 1 1 - 1 "(1.196)

Using the identity of [43]

T

1 (0s)(0s)dt 1 (E(0s)(0s) + (0s)H(0s)

0

from equality (1.195), taking expressions (1.196) and (1.171) into consideration,

we will obtain
2 7

1 =(0 s ) E12 + ,(0) 2 , 1n

I ( 1 1 i. l1 2x I 1 . .

If the notation

S7(01, '01)= s2(61, m) + ixcS(O, '

S8(01, c9P1)= iS4(0, ,) -c f x0 5 (0,, 90, (1.198)

2 7Here and below, the dash over the symbol denotes a complex conjugate.
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is introduced, and relations (1.191) are taken into account, formula (1.197)
may be given the form

' (O, c) (S I (, , r,) 2 S8(0,, ps) 2). (1.199)

We will find the expressions for the intensity IO(061, 1) of the primary

field. To do so, in formulas (1'.194)-(1.196) we will replace P(Os) by .P 0 0 )

r r
and, using relations (1.186), (1.185), by analogy with the above we will
obtain

k(4 1 Eo 12
2xo (1.200)

I'(o1, €1)The ratio will give us the relative values of the intensity

I(1, s,)= -- (IS,(,, pz) I+lS(01 , 'i)12).
Rkv (1.201)

A number of important characteristics of the electromagnetic field are
connected with the intensity I(61, 1) . One of them is the dimensionless

direction function F(01, 1l), defined as [44]:

F(O,. Tc9)=(kor)2I/(0 , yf). (1.202)

1
The quantity -- F(01, i) has the dimension of area. The relative /60

0

values of I(01, 1) or F(01, 1) may be plotted on a polar diagram against

angle 61 for a fixed 1. This diagram is called the scattering diagram of the

given body.

The following formula follows from (1.201), (1.202):

F(6,, _) = (I S (6, + IS8 (6, ) 12)
ko (1.203)

Another quantity related to I(61, 1) is the differential two-position

scattering cross-section defined [45, 46] as follows:

0o(0,, t-)= 4FrI (0, st);
(1.204)

or, taking relation (1.201) into account,

Do(0" ()- (j ( ',, 92) (+1jS (01, T))k)." (1.205)

61



In practice, however, use is frequently made of the differential two-posi-
tion scattering cross-section (CD) and backscattering cross-section (aB),

written in dimensionless form.2 8 This is usually accomplished by dividing
0 and a respectively by the area of the central section of the large sphere

(nb ). Formulas (1.205) and (1.211) will then become

aD(14, )== (k S7 (0, 2(, (S ) 12), (1.212)
kb 2

S= 2 (kob) 1) (2n + 1).( -E n . (1.213)

The scattering indicatrix y(01, 1) and the effective area of total

scattering al, referred29 to 7b21' are defined [44] respectively as

r (01, ,) = T - F (,. f,),

a (kob 1 )2 0'

r= S S F (01, cf)sin 01 dO1 d 1,
0o0 (1.214)

We first transform Y0. Replacing in expression (1.203) the squares of

the absolute values by the product of two complex conjugates and considering
relations (1.198), (1.192) and also the values of the integrals 30

S n , (01) 'm (01) + m' mn (01) i' (0,)] sin 0, da ,
0

2 (n + m) I n!(n+ 1)
-2n + n-n- m)! n

I (t) (0,) + i (0 m,) r (0)] sin 01 d61 = 0 for m = 0, (1.215)

0

2 8In this case we will hereinafter denote such quantities by the same symbols,
but without a dash.
29And therefore dimensionless.
30The first of these integrals is given in [47], and the second is obtained from
(1.167) by integrating by parts.
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resulting from functions (1.137), (1.207), (1.208), reduces formula (1.219) /63
to the form

a2 =~ ko (kobl)2 (n - m) 

Sn=l m= t1  (1.221)

X nm (u) - ixomB2(v)l

If in equality (1.221) we switch to the new variables ) and =(2) in
nm nm

accordance with formulas (1.210), taking into consideration the relation (Im)iA =
=(-R)A, we will obtain the final expression 31 for 02:

2 (kob) 2 (--Re) (2)  
(1.222)

n=1 m=±l

A linearly polarized wave incident on an obstacle usually generates an eliptically
(0s) (0s)

polarized scattered wave containing both E , and E . As a rule, radar

units which emit and receive radio waves are as sensitive to that part of the
field scattered by the obstacles which is polarized in the same way as the
field of the plane wave.

In this case [46], the two-position scattering cross-section32 is calculated
from the form E(s)J

o'(01, TI)= lim 4xr IE(1- (1.223)
(0 )COs)where E is the component of the field of scattering at the point of

reception in the direction 81, i1, polarized in the same way as the field E00)

of the plane wave striking the obstacle from the direction 80, 0; rl is the

distance from the origin, at which the diffracting body is located, to the
receiver, located in the long-range zone of the field.

If in formula (1.223) 81 = 80' l = 0 the value of a' is called the

radar cross-section and denoted by o'0. Both a' and a'0 have the dimensions

of an area.

Since in our case (see § 1.4), the plane wave propagating in the negative

direction of axis Z1 has the electric vector E(00) polarized along axis Xl,

31A different derivation of formula (1.222) is given in [12].
32In contrast to oD, the word "differential" is omitted here.
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expression (1.223) is. equivalent to the following:

2

' (O,, ()= 1m 4l r D
SE(°°) 12 (1.224)

If we substitute the quantities which, as can be readily seen, have the
form

IE(0s)I = IE(Os) cos6 cos 1 - (0s) sinql ; IE (00)I = k4IEO 2
Xi 61 1 1 x 1

into formula (1.224) and take relations (1.191), (1.198) into account, we
obtain

o' (O, TI)= k- I S7 (,, O,) cos 0, cos p, - S8 (6, fI) sin , 12.
0 (1.225)

Hence, the expression for the radar scattering cross-section:

o - 1S7 (0, 0)12,
k 4= (1.226)

or, by virtue of relations (1.198), (1.192), (1.207)

.B " () (uixoB)()  ( 1) (n+. (1. 227)

22
In the notation of (1.210), formula (1.227) assumes the more compact form

ro -1 (-1)(2n )n - ) 2
4I n=i m=+i (1.228)

Normalizing a'(el, 1) and a'0 by dividing by 7b1 , we obtain the dimen-

sionless quantities a( 1, 1) and a0:

4
o(0,, T) =- I S7 (0,, y,) cos 0, cos p - Ss (01, y9,) sin y 12,

k b2 (1.229)

n e : (- 1)n(2n 1)( (1)\ -  2 (1.230)
0 464(k
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§ 1.6. Scattering and Attenuation of Electromagnetic Waves by a Spherical
Particle for Different Special Relative Positions of Its Layers.

We will consider different special cases of the general solution of the
problem (§ 1.3, 1.4) and the corresponding (§ 1.5) electromagnetic and radar
characteristics. The discussion will also involve cases in which the centers
of all the spheres are located on the same straight line (line of centers), and
cases of concentric arrangements of the spheres.

Case, Where the Centers Of All v Spheres Lie On the Same Straight Line.

Mathematically, this condition (Figure 1.3) is equivalent to the
following

8r=O, 1=2, 3,..... v-i. (1.231)

According to the remarks on page 12 on the introduction of the coordinate
systems X!Y!Z!, we also have in this case

.= O, . :=2, 3, ... , v -1. (1.232)

Relations (1.231), (1.232) considerably simplify expressions /65

(1.65), (1.66) if one considers that [26]Pn (1) = 6ml where 6 is the Kronaeck-ml ml, ml
er symbol.

b -- = , ',, b l 8,, j= 2, 3, . . ., .-- 1; (1.233)

Hence, formulas (1.69), (1.72), (1.93) will assume the form:

j== 2, 3, .... v--1;
Km j F~ nlji, ,3 -(1.234)

S (n m)! ( -1)! Jn (kbl+l) h (kib)
a(m2-, (n - ) !(+l)! hn(kbj)+'t(k b X

X F(- , j=2, 3, . ., v(1.235)

(2j+2) (n + m)!(2-1-)! qj lh,, (k bj +1) j*(kj+1b j )

(n1) qh, (kb 1j +) 0j (kb + b)

X F, + ,,,, 1, 2, . . .. v- 2; (1.236)
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Zo /66

03 b

3 /x;

Figure 1.3. Case of Location of the
Centers of All the SDheres on the Same
Straight Line.

-1) I (n+ m)!(r-I)I , (kjb 1) h (klbi)
nm2j+l + - (n - m) (- + ) n k +b Xn (J I+ +1 )h, (j+1b1+l)

XF(-cmTtm, j=2, 3 ..., v--;(1.237)

a(2]+2) +n m)!(-) C(kbl+,b+,)j:(k+ ib+ 2)aWnm 2]+1 (k)-(-m)I( ) n J+(k bj+)h, (k +ibj+1)

X F,,, /+tm, j= 1, 2. ., v - 2. (1. 238)

This in turn reduces system (1.92) to the form:
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Z() (a2O);ZO+ (2 ) (2j)(D(Oam a. 17n Tm r mmmo -v m,
r=O L--

z(+ Z((()7((1)
Zn = + Z)Z,1 a + .,0n a , m i ,()

T=O -=--i=

00 - COZ() (4) (4) +2) (1.239)

tm+ - +n Z-Tn 
1

ma +1  Tim aTrmnm 2 j i,

T=0 1=- =0

where a(s) and (s 3() are defined by formulas (1.93), and a(4) by formulas

nm m nm m

corresponding to the case of a plane wave.

source of the electromagnetic field is located. Hence, to the conditions (1.231),2j2)

4 a l 1)armnm2j T "rn2j,
T=0 -=O

(1.232) already discussed in the preceding case it is necessary to add

0. Then expressions (1.233), (1.235),formulas (1.93) andill ai be valid for(1.235)-(1.(238).

If in system (1.239) z is replaced by a () in /67

nm nm nm nm
accordance with expressions (1.187), we will obtain the simplified system (1.190)
corresponding to the case of a plane wave.

Let us note here that the case where relation (1.150) applies is completed

by systems (1.153), (1.193) provided that them (1.239) will then assumppropriate thchangese forin
expressions (1.154), in accordance with equalities (1.234).

Case Where the Line of Centers of All v Spheres Coincides with Axis
Z
I •

This case is characterized by the fact that the line of centers of
spheres under consideration passes through point 00 (Figure 1.4), at which the

source of the electromagnetic field is located. Hence, to the conditions (1.231),
(1.232) already discussed in the preceding case it is necessary to add
)1 = 0. Then expressions (1.233), (1.235), (1.237) will also be valid for

j 1 i, and (1.236), (1.238) for j = O. System (1.239) will then assume the form:
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(0) a(0) (1) + + Z(2 a) _((2 f )

Znm -- a, n + ) arm

7(2)) - (2J)7(2j+ ) z(2J-)a(2J-l) + (2J+2) (2]+ 2 )

Za2m ) a. nm Y m acnma2j + sm mnm2 ,.240)
'r=0 '=0

(2j+l -- (2j+I7(2j) Z - (2j- 1) z(2J+2)(2f+2)
4m a+- aa ,I + C )+ mn*2j+l, (1.240)

'C=O '=O

j 1, 2,. . . ., v- 1; n= 0, 1, .. .; m= -n, . . ., n.

Replacing in equations (1.240) Z ( s ) by Z(s) and O(s) by (s) according to
nm nm nm nm

(1.187), we will obtain a system corresponding to the case of a plane wave. If
however relation (1.150) applies, the coefficients (1.154) of the unknowns in
systems (1.153) and (1.193) are transformed by taking into account expressions
(1.234), which, as was shown above, are also valid when j = 1.

7 ia,, ,

P

x,

Figure 1.4. Case of Location of the Line
of Centers of All the Spheres on Axis Z1.
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Case of Concentric Arrangement of v Spheres.

This case (Figure 1.5) may be obtained most simply, for example, from

the preceeding case if in the latter the quantities h2, h 3, ... , hV are made to

tend to zero. By virtue of the easily verifiable relations

j, (0)= 6o,
I (n -m)!

onp- 2n+l (n+m)l pn

and (1.233) for j = 1, 2, ..., v - 1 leads to the following values of knmtZj'

nmn "

Knmij=Kjni'm=T ,B),, j=1, 2, ... , v-1.
(1.241)

Using these values, one can represent equations (1.240) in the form of the

finite algebraic system:

Z(0) a()7((O) - a(2)
~ ar + +z am lnnmO - ( mnr,

Z ) _ M ( o) -Z (2 (2) ml _ j) nn

m a am + ±Z) anmi (Dm

Z(2j) ( ) (2 ) l)Z(2j-1) (2]-1) (2j+2) (2]+ 2 )

Znm = ~ , nm nm nmnm2] .nm anmnm2]
Z(2]+1) + Z(2- (2f -1) 1 (2+2) (2]+2)

nnman21 + am n) amnm2]+ 1 + Znm nmnam2+ 1 ,

(1.242)
j =1, 2, . . ., 1; n = 0, 1, .. .; m=-n, ... , n,

where a(S)n and (S) are given by formulas (1.93), and a nms are given by /69

formulas (1.235)-(1.238) taking relations (1.241) into account.

If we introduce the notation

2(2j-1) (2n-- 1)! (2n + 1)!! n (kbj+) , j , 2, ... , - 1;
n2j (kbbj+ )n. h (kjbj+t) 1

(2 +2) qj+, ( k +1b]+2 )n hn(ki+lb,+l)

2)h b j=0 1, 1 . ., v - 2;12 - qj kbj 1 h. (kjbj+ 1)

(1.243)
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( 2j+2) - _ b +I (kjb (k+j+)
- n2 - 1 Z-F =2

(2n - 1) 1 (2n ) - +

, , .., 2, (1.243)

system (1.242) may be transformed to the form
3 3

S  
()n(O) 1+ z(2)(2) .() .

+Z).( 2() (2)?(2) _ (()

mngthat() -LZnni 2.)
Z(0)(l) 7(2) z7(3) ,(2) + 7 (4)a(

4
) rnm n2 T m + nm tn Lnm-' n 2

S(2 v-3) (2+3) + (2-2 ) (21) -1)=

S n2vn-1 anm n2 - nm

j=2, 3, ... , v-2; n=., , .. ; m=-n, .... n.

nm 2 nm

(2-)it may be concluded that for these m, system (1.244) is homogeneous.

33Assuming that v > 2.
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Figure 1.5. Case of Concentric
Arrangement of the Spheres.

By virtue of the unique solvability pioven in § 1.3, it follows from the
homogeneity of the system that

Z'- ==0; Iml>1; n==0O, 1,...; j== O, 1..... 2v-1, (1.245)

or in terms of notation (1.90)

A(I) - ,j 1, 2, n=, 1,
Bnm=0, j=/0, 1,..., v- 1 (1.246)

(1.246)

We will denote the column of free terms of system (1.244) by n :nm

(0)
( nm
~(1)

0
nrn

0 (1.247)
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The determinant of the system by An:

-01 a(n°) n 2) 0 0 0 0 0 0

a - 1 L . 0 0 0 0 0 0 0

0 0 0 . j - 1 a 2(21/+2) . O o o
o 0 0 . 2 1 a - 1  21 . . O 0 0

0 0 0 . 0 0 0 0 22av 2)
S2(2--3) _1 (2v -- 2)

n .- 2 an

So 0 . 0 0 0 . 2-1 a.v --1 (1.248)

n=O 0, 1, " .; j=l1 ...., v--2.

and the determinant obtained from (1.248) by replacing the s-th column (s = 0,

1, ... , 2v - 1) by the column of free terms (1.247), by Asm) From Cramer's

theorem, we then have

Z11- An , s=O, 1, .. , 2v-1,

(1.249)

or, taking notations (1.90), (1.91) into account

A(m) - / (n--m)! (2n-1)!
Anm A (n + m) (kj+ bj+,)n 'I

A,/ ) (Mn) kb Nn 0j=0, 1 ..... v--1.

,nm-= n (n+m)I (2n+ 1)!! '

(1.250)

By analogy with the coefficients Z(j) A(j)  B j) , we will agree to denote by
nm nm nm

Am) (m)
n(u) sn(u) the determinants An, A(m ) corresponding to the potential U, and

by A (m) , the determinants corresponding to the potential V. We will
n(v)' sn(v)'

have in this case:
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) In(U) (n-m)t (2n-1)!!
An, (u)= n) (n + m) I (kj+lb/+ )n

(2J'2In (v) (n-m)' (2n-I)f!

2() (n m) I (k )

Enm J/) (n(
nm() iAn (U) (n+m)! (2n+Il)! (1.251)

A(m) 1/' 'Ji

A(m )

2) 2n () (n -- m) I (kjbj I)n

m ) 8n n ( )  (n + m) I (2n + 1)!!

At the same time, relations (1.246) will become

nm (a) A nm (v) B nnjm)(a B -- nm (v) =0 n p H m > I(1.2S2)

From expressions (1.247), (1.76)-(1.80), (1.90) it is easy to obtain the

following relations:

n., -m (a)= -1) nm (u), (1.253)

On, -m (,) .m (W,

which in turn lead to the equalities

&(-M) A(m)
.n (u) 1 l (),

(-m (m)
sn = sn(v). (1.254)

The dependence of the expressions for nm(u) and An on the index m, revealed

in relations (1.253), (1.254), makes it possible to establish this dependence

for the coefficients A ( ) B(j)as well.
nm nm

An,-m (u) (n + m) A(+)(n --m) I n m ( ),

B-m (U)= (n + m)! ()

A(, +) (n+m)A ()

n, -m(w)- (n-m) nm(V),

j= 0, 1 .731.
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To formulas (1.255) it is necessary to add the following ones:

A(jo+ ')B ()=O, =0, 1 0 ... I, (1.256)

which are readily obtained from expressions (1.76), (1.79), (1.247), (1.249) and
from the uniqueness theorem of 9 1.3.

If in equations (1.244) Z(S) is replaced by Zs) and(s) by i(s) , innm nm nm nm
accordance with expressions (1.187), the system corresponding to the case of a
plane wave will be obtained.

The determinant of the system thus obtained will remain the same (1.248), *

and the column of these free terms will assume the form

0-)

"=1 (1.257)

0

Operating in the same way as in the derivation of expressions (cas.25e(1.256),
we will have the following relations corresponding to this case:

A i (n-m)! (2n-l)!!

n (U) (n + m)! (kjbj)n

(J+1) 2j+in(v) (n-m)! (2n-l)!!

nm (v) An (v) (n + nm) (kjbj)n

n - (u) - I (n - ) (k (a+ An
nm () An () (n + m) (2n + 1) !!'

~ () 2() (n-m)! (kibj +)n (1.258)
nin (v) An(v) + (n m)! (2n+ 1)!!

( () n0 (J) b() 0 np (1.259)
nm (74n (v) 0 np m
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(i) (j)
n, - (u) Inl (u)

S- (n1 (v)

]= 0, 1, ... 2v-- 1. (1.260)

From formulas (1.258)-(1.260) it is now easy to obtain the relations for the

coefficients(1) (2) Thus, taking notation (1.210) into account, we have:
nm nm

E- -( .1-)) =, -- nm npH mll1; (1.261)n, -,,) hi .iI m

EM 2 Vn(n + 1) on () (kobl)n in-i
--- k (2n + 1) An (u) (2n + 1)! !

" (1)
-(2) _ 2 o 2) n (n + I) n ( . (kob) (1. 262)

ko (2n + 1) ) (2n + ) !!

where the determinant Ao) = A(u) , AO() may be written in the following form: /74
on On(u) On(v) J

a 0 0 0 . 0 0 0

- . ) 0 0 0
* . . . . . . . . . . . . . . . . . . . . . . .

0 0 0. 0,) 0 0 0

0 0 0 . 0 0 0 0 . - a - 1

(1.263)

n=O, 1, .. .; j 1, 2, . . ., 2.

Relations (1.258)-(1.262), which apply in this case, permit a substantial
simplification of the formula describing the field of the plane wave and its
various characteristics in the long-range zone.

At this point, having further applications in mind, we will turn to the
electromagnetic and radar characteristics exclusively. For this purpose, we
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need expressions (1.192) for Si(e 1, 1), i = 2, 3, 4, 5 transformed to a simpler

form by means of the above mentioned relations. They are:
00

S(0 1, pj)= 2 i-" Bu (.u)n (0) cos?'
n=1

oC

S3 (01, f) = 2 1 i"B) (1)os ?,
n=1

S4(01, 1)= 2i i- n 1 (- (1 n, (0,)sin.=, (1.264)

S5 (01, 1 = 2i B n ,trn(0,)sin , .

From the above and from equality (1.198), the formulas for S7, 8(81, 4i) follow /7
directly:

S7 (1, p, )= 2 cos i+-" .(o) i xoB (.1 ({)'j" " n
n=1

S8 (0, ,) = -2 sin F, Il" nt ()T + x() t+ -r o., ( (0,)] ,
4=l

(1.265)

which in terms of notation (1.210) and

'2n + I ) + (01) _ (2 _,, (0

n ((1) n + 1) 1 - n1 () (1.266)

n=1

may be written as follows:

S,7 (0,, 1) = -ikoW, (,)cos 1f,

S8 (0,, ) )= ikoV 2 (01) sin L,. (1.267)

It is now easy to write the expressions for the electromagnetic and radar
characteristics corresponding to the case at hand (see Figure 1.4). The same
notation as in § 1.5 will be used. We thus have:

a. the intensity of the scattered field in the long-range zone

I(0,, s,) (kor,). (I W, (0,) Icos' + I W, (0,) i2 sin2,); (1.268)
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b. the diagram of the scattered field in the long-range zone

F(01, ,)= I W (,) 12cos 2 , + I W2((1,)) jsin2 ,; (1.269)

c. the differential two-position scattering cross-section

4
b (0i,, ,) = (o,)2 (i W, (O,)12 COS2 1  W (6)12sin2 f ,); (1.270)

d. the backscattering cross-section

CB: I I- (-1)' (2n + 1) E1 - (1.271)

Y 0I I2n (o) c 2 cos2 12 + 1 2 (e 2) 12 s(1n. 2n=n=l

f. the effective area of total scattering

S(2 1) 2); (1.273) /76
n=l

g. the effective area of attenuation

2 (
02 (--e)2 (2n --+- I) , n- 1) ; (1. 274)

h. the two-position scattering cross-section

40(1,, W) (kob)2 W1 ()cosO 1 cos
2  (O1 )sin 2 

1 j; (1.275)

i, the radar scattering cross-section

co= (-1) (2n +1)(E(1 (), (1.276)nnl I

which in this case coincides with the effective backscattering area in view of
the symmetry of the body under consideration.

Thus, the expressions obtained for the characteristics, generalizing the
expressions already known for a two-layer or single-layer particle, may be used
in calculations of a v-layer spherically symmetric spherical particle.

Let us note in conclusion that if the parameters of the media in the case
under consideration are such that identity (1.150) applies, the determinants
(1.248) and (1.263) must be replaced by the corresponding determinants of
systems (1.153), (1.193). The coefficients. of the unknowns of (1.93) must then
be simplified by considering equality (1.241).34

34This remark applies equally to the two cases discussed below.
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Zf Case of Two Concentric Spheres. This
P case (Figure 1.6) is realized from the

\ preceeding case when v = 2. For unknown

4 Z ) (j = 0, 1, 2, 3), system (1.244)
nm

becomes:
Z(O) Y, 7(0) ( 7(2) C)(2) _ ((0)

-z + Z.a(n + z -n ,.. an tL nM nO nm

za2 - z(1 + Z)!=
. 7z(0_ Iz +z( () (3) a(2) 0,

z7( O)+ Z( 2a 3) (3) = 0,

(1.277)

Figure 1.6. Case of Two Con- n = 0, 1, ...;!m = -n, ... , n,
centric Spheres.

where the coefficients of the unknowns are

defined by formulas (1.243), (1.93). The solution of the system may be written

in the form (1.219). The coefficients A (j) and B( ) are found from relations
nm nm

( 0 )  ( 1)  ( 1 )  and
(1.250)-(1.256), which include only the determinants A 0n(u) j (u)' An(v) and

An, where

o0 0 -1 ao 0 0 -1 a'

0 -a 0 0 -1 a

(m) a , ' -1 a1 ," -1 a -10 - -

2nm 0 ( 0 a ,)n 0 -1 0

0 2n1 0 ---1 0 a3 0 (1.278)

--1 ao) . 0)
n2a - no 0

(.)  - ,1 0,2 0

0 .9P a -1

The coefficients A), B(J) however, corresponding to the case of a plane
nm nm

wave, may be obtained from expressions (1.258)-(1.260) with the aid of the

determinants:
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0 ) a ° (0) o0 -1 , 2),2( 0
o - 2 0 = ? ) a n o

o -1 a? ' 0 0 -1 a'(2

o f a () -1 0 0 a? -- 1
/78

-1 a ) 0 -1 a() 2o(2) Z(

._ a - 1 1 0 ( a( -1 ( ()1 ,
S o ,) o a ' " 0 O4 -1 o0 n2 0 a 0 Q,, 2 1 0
0 >'20) 0 (2( (3)S0 3 (1.279)

Here as in the preceeding paragraph, we will deal only with the transformation of
the electromagnetic and radar characteristics of a two-layer sphere. Since their
analytical expressions will remain the same as in the case of a multi-layer
sphere, i.e., (1.268)-(1.276), the transformation will apply to the coefficients

-(), (2) written in (1.262) in terms of the determinants (1.263), (1.279)
n

It can be shown that after numerous and cumbersome transformations based on
the properties of the determinant, these coefficients will take the form:

aoji (kob1 ) alj (klbi) l1h, (klbl) 0

S(kobI) (kb) 0 (kb ) 0

0 -zin (kjb2 ) -2Ihn (klb 2 ) a2j, (k2b2)

10 ' (klb.) Cn (klb) -, (kb 2)

n --aoh (kobj) aij, (klbl) alhn (klb 2 ) 0

-C (kob) a (k bl) C (kbl ) 0

0 -al j, (klb2 ) -lhn (klb 2 ) a2]n (k2b2)

0 ~ (k 1b2) C (klb 2) -n (k 2b 2)

Poin (kob1 ) piJ, (kibt) 1hn (kibt) 0

J(o(kob,) , (k,b) C' (k,b) 0

0 -tjn'(kbs 2 ) -Plh (kjb 2 ) p~jn (k 2b 2 )

(2) - 0 k2 b ) 4 (k2 b 2 )
ni -P ohn, (kobl) PBlt (klbl) 1hn (klbl) 0

-C (kobI) n' (.kb,) 0(kRb) o

0 - in (kjb) -Plh (klb 2 ) 2in,, (k2b2)

0 +n (k1b ) C, (klb) -,, (k2b2) (.80)
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If we introdUce the notation

= ko b2, , v=kob,, k2 N N

y = JV1,i= 00=, 1, 2,Pi(1.281)

,(X) (2) (X

then carry out transformations similar to those which led to expressions (1.280),
and consider the relations

Sk2b 2 = N 2a, k b2 z= N,, kb, = Nv, (1.282)

which may be obtained from (1.281) by using formulas (1.1), (1.3),.we will
-(1),(2)

obtain another representation for the coefficients Enl

o . )(N'2) T1 (N ) ( (NI.)

0 -Y2j.n (N 2 2) yljn (N 1 ) ylhn (N 1 i)

7I () 1 0 I) (N,,) () (NJ')

() Yojn (v) 0 YJn (NI) ) ylh Niv)
nl0 - () ((n ) (2) (Nl-)

0 -Y2jn (N 2 7) lin (N12) y 1h, (N 1~ )

4)( 0 T1. (NI ',,) (N,")

-yoh (v) 0 ylj. (NIv) y1h,, (Nv)

0 -jn (N 2 2) in (N 1l). h, (N 1 7)

o --y2i~(nl) (N2a) ylr(n) (Nla) yl-) (N 1a)

in (v) 0 j, (N1v) h, (Niv)

) o (v) 0 yl1 j (NI') ylg(2) (N )o -in (N2 7) j, (Nla) h, (Nia)

0 -- y 2 ~ )(N 2 ) yY 1
) (Nla) Y1 1 2) (N 1 a)

-h,, (v) 0 in (N v) ha (N)

-o(2) () 0 y (N) y (N),Yo 0, (N,,) ye". (N,,,)

(1.283)
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In this form the coefficients of (1.283) coincide to within the designa- /80
tions with the analogous coefficients given in [3]. As was done in [3], we will
also write them in a form convenient for calculations:

-1'( 9 0) Af+ y n (o ) A2  (1. 284)
7) (v) A1 + y0oh (v) A2
n - A3 + 1 ) A4

h n (v) A3 + Yo0 ,) (2 ) A4

where

A = yj '(Na) [j. (Nv) h,,(N) - i,(N 1 ) h, (N v)l +

+ yly2,, (N 2
a ) [(n ' ) (Nra) h, (N1') a- 2) (N 1a) j (N1v)]

A 2 -- yY(' (N 2() [i, (N,)-i)) (Nv) - h, (Nia) n) (Nv)] +
11(2) (1)N ' (2)

Y2In. (N 2&) [,(N1) ) (N) - n' (Nm) 'o (7)(2V' (Nv)]

A 3 = yj,, (N) [ ' ) (N 1 2) (Nca) - - )(N a) X

X ~2?)(NV)1 + YIY2qTl ) (Nia) [i, (N"1 ) fh (Nv))- h, (N.) (N 1 )

A 4 = y,1 . (N 2 ) [bI: (Nl,) h,, (Nv) - ,2) (N,a) ], (N v) +

+ Y2 (N)2a ) [j. (N v) h, (Na) - ., (N,a) h,,(Nlv)] (1.285)

Case of a Single Sphere, In this

Zf case (Figure 1.7), v = 1 and system
(1.244) hecomes:

P

7(0) a (.1) (l) (I(1){l tt )' - Zt,3, = ilt)

Hence, considering relations (1.249)- /81

04 -(1.263), (1.149a), notation (1.281) and
with condition (1.150), as a result of
a series of transformations we will
obtain the values of the unknown

x/ coefficients:

Figure 1.7. Case of a Single Sphere. (, • YOiA ()
Anrn (u)in (u)

yl, n (N 1v) Cn (') - Y,, (V) ' (N 1")
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() 1 n ( )
A ) -iA (A -. t) Yo0 4n (N ) , (') - yln  (V) I (N )

B(o) (Nv ) () - yo, (Nl) a ) (0)
nm () - Anm (a) ,

yot, (v) It (NY) - Yjn (N v) 6n (V)

(o) YO+n (Nv) , (') -- y, (NIv) n ) ()

y (v) +' (VIY) -. yo n (Nv) C'(v)

where (0) and A(0)  are defined by formulas (1.76)-(1.80). The coefficients
nm(u) nm(v)

(1  and ,(1) corresponding to the case of a plane wave, are similarly obtained:
nm nm

A( 1) 2n + 1 -"nkoyo
2n (n + 1) ylmn (N,) .(v) - yo. (') +n (NIv)

(1) - 2n + 1 -"aoy
nI (.) 2n.(n + 1) YOn (NI,) ( _) -- y1  (v) (N ')

(0) 2n + 1 yln (Nt ) -I Yo(.' (N ) (,) (1. 286)
0 2n (n + 1) YoCn (V) +n (Nv) - Yl~,r (NI)n (''

(o) - n+ 2n + I) Yl1 ' (NIv) n ( O' - Yon (Nt ',(,)
' ) 2n (n + 1) yt () n (N,,) - y0o4 (NI,) C' (')

Using relation (1.286) in (1.210), we come to expressions for the coeffi-

cients w(1), (2, known in the literature as Mie coefficients:
nl

(yo M (Nv) 4 (v) - y1, (N, )a. (' )
n = -- yo& (Y) (N(1v))- ~C (,')

o'(N) () - y4J (N,) '>np (4) (1.287)

YO+. (N v ) J (') - YlCR ('0 n (N1'

the electromagnetic and radar characteristics being defined by formulas (1.286)-
(1.276). Let us note that the same relations (1.287) but in a somewhat differ- /82
ent form may be obtained from expressions (1.283), (1.284) if in the latter
one sets b2 = bl (a = v), or b2 = 0.

= - y0 P (NO ) 1, (a) - y .n1 ) (a) n (Nsa)

yo '
n (Nsa) h (a) - y2 (

2)() ] (Na)
, _ 3yoI(') (a) j (N(N))- y () (1.288)

y () j (Na)-- y () (Ns) h- (a)
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where

S- s=2 for. b2 =,;

2nbt
a = -, s=1 for b2 =0.

§ 1.7. Scattering and Attenuation of Electromagnetic Waves by an Ideally
Conducting Sphere With a Nonconcentrically Layered Cover.

It is.evident that the solution of .the problem formulated in the title of
the present paragraph should follow from the general solution of § 1.3. if in
the latter one sets k = im. However, this method turns out to be more cumber-V
some and much more complex than the direct solution of the problem.

Let us have in the field of a dipole radiator (Figure 1.1) v spheres
arbitrarily located inside one another, the v-th sphere (of radius b ) being

ideally conducting. In terms of the notation of § 1.1, we introduce the
generalized potential T. of medium j, which satisfies equation (1.4a) and is
related to the electromagnetic field components by relations (1.5), (1.2), (1.7),
(1.8). The problem under consideration is stated as follows: to find the
solutions of equations (1.4a) at each of j = 0, 1, ..., v - 1 media under
conditions (1.9) and

qjT i = q1 + 1T j+ 1

a(rj+IT) a(rj +lT+ 1) for, r+ l = b l + I, j=0 , 1, ... v--2,
drj+1 Orj+

d(r,, T , (1.289)s Or + PoT,-T =0 for r= ,b,,

where 35

o= {1, O, =0}, =0, 1}. (1.290)

The solution of the stated problem is sought in the form of the same (1.75)- /84
(1.85) expansions as in the general case. Satisfaction by the latter of condi-

tions (1.289) by.analogy with (1.92) leads to a system for unknown Z(j )

related to the coefficients A(j)  B 'by relations (1.90):
nm nm

35The same notation as in the preceding sections will be used here. Since in

the v-th medium, because of absence of the electromagnetic field, E(v 1)

(v - 1)
= E( = 0, T = 0.
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z = aO) 'z + + ~ i z:a!o-

t=o =--c

Zn n)( + + jj ; tlnm i

(2v-) ( n+m)t(-I)I r (k Zb)h21(k2) X

Z nm- a (n -nm) ! (t 1) QG (k2 1 b )aJc(k b, Kzj-II

= (k=-,1 b ,=0 =- (1.291)
a(2/+2)

nnmm

84

'=0 I=--

(2-2) (l (k _b )h (k,b ,)
"rlnm2- -- (n -nr) (2 , ) t

O (, , -- [rd= (k _ T)l + o,-n, (kn, r 2.

In thee n D nm " a transformations the fulfillment of inequalities (1.88),
(1.89( was assumed for j = O, i, ..., v - 2, and

rr (k , - r (jO. (1 .29 3)

By virtue of (1.4), condition (1.29,) always applies, and the proof is
carried out by analogy with the proof of statement (1.88). However, condition

(1.89) may also not be fulfilled. This case will be discussed below.

If by analogy with the general case (p. 36) we introduce a Banach space /84

7'2" consisting of three-dimensional matrices Z= {Z( }, n!=O, 1,.... m=--n ....

] -, i .... 2v- 2, with Z( j ) =.0 or Iml > n and the norm
nm

84



-11= V -- o II 1"

IO= n-O ni=-n

then system (1.219) may be written in the form of a single functional equation
of type (1.97):

(W + T)Z= [f. (1.294)

Fredholm's.alternative is valid for equation (1.294), since the linear

operators W and T act from Z'2 to Z1, the former being reversible and the latter

completely continuous, and (PE 12

Indeed, the transformation matrix of W

Sa 0 0 0
a, -1 . O 0 0

0 0 . - o-  (1.295)
0 0 a(2v-a) -

an -- 1 0

0 0 0 0 -1

is a square matrix of order (2v-1) x (2v-1) with nonzero determinant, which can
be easily demonstrated by the aid of inequality (1.108) by expanding the deter-
minant of matrix (1.295) with respect to the elements of the last row. The
total continuity of the operator T devolves from inequalities (1.126) - (1.129)
and

V ' a ~ (2v- 34 '2

This results from relation (1.128) and from the estimate

< const in (Z)
(Z) h. (z)j

obtainable by means of lemma 2 of § 1.2. Further, by analogy with the general
case, it is shown without any appreciable changes that the homogeneous system

(W +T)Z = O

has only a trivial solution.
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Hence we conclude that system (1.291) is uniquely solvable in Z2 and by

virtue of theorem I of § 1.3, that expansions (1.83) together with relations

(1.2) realize the solution of this problem.

If the paramters of the media are such that equality (1.151) applies, then

by using relation jo < v - 2, which holds for the problem at hand, we arrive

at a system corresponding to this case:

27 -3 2v-3 co

N Z (S)a(/' Z s (

=0 1=0 r==-- (1.296)

CO C

Z(2v -2 ' Z(2v-3) (2v-3)
-Lm "d !:1n1m21- 2 ,

-=O 1=-t

s=O,, .. , 2v - 3; O, 1, .. ; m=-n, .... n,

where a (n)  a(i) are defined by expressions (1.154).
is**' TZnms*

The unique solvability of equations (1.296) is shown as in the general
case.

In the case where the primary field is the plane wave field (1.186), system

(1.291) becomes:

Znr anZ" + + V 2~. 0anmo-
-C=O I=-

-() (2i ( ) +2 ) 2 "2) (2 ( 2

.=0!I=--

nm , - m nm n2j--

V" "z(J+2) a(+2)

S'2(2v( - (2)

cO0 1-=-
86m l nm2]2



1,2,.....v-2; n=O0, 1, .. .; m=--n, ..., n,

where nm is defined by formula (1.187). All the expressions of 5 1.4, 1.5 /86nn
for the field components and also their electromagnetic and radar characteris-
tics in each of the media will remain unchanged. However, the only exceptions

are the coefficients An and B( , related to ) by a dependence equivalentnm nm nm
to (1.90). If identity (1.151) also applies to the case of the plane wave,
system (1.297) is no longer suitable for determining (j ) . It must benm
converted to the form:

2v-3 2v-3
" (s) ~(n ) +(i ) ,,ss

=0 =(1.298)j 2(2,, - 2) (2v -3) 2(2v-3)
nm tnin2v -- 2•

-=0 =---

We will consider special cases of the relative positions of the layers of
the cover.36

Case Where the Centers of All the v Spheres Lie on the Same Straight Line.
In this case (Figure 1.3), relations (1.234) apply, and in system (1.291) and
the series of binary sums is converted to unary ones:

Z(o) '(T) 7(O) t'+ + Z(2)a (2) O()

C=O I= --

r=0 =--r =0

fZom ystem ( 9 ) o m 1 (
12 a.ZI SM-4-)- a i7U )1 +

_=O -=O - -- -- 3,0

2)7(2) + ) Z2a, 2 -1- Z(2 + 2)(2j + 2)
Z rn- 3 rrnm 3 ,at +m trnrn 2j,

'=O =0

36Cases where equality (1.151) applies and the unknowns are determined -either
from system (1.296) or from (1.298) are treated like the corresponding cases in
§ 1.6, and are therefore omitted here.
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z(j ") _ a Q )Z7(2j) 7(2-,- ai) Z 7 Z 2j ),(2j+,2)Znm+1)(2 - ')a (.2,m mnm2j++ i -. n )at mn m 2+ 1,
==0 r=O

2) -m un 2v - 2.

Here a ( s ) are defined by formulas (1.93), a ( i )  by (1.235)-(1.238), andn rmnms
(2v - 3)a(2v - 3) by the formula
Tmnm2v - 2)

(tV - 3) (rn - m) I ( - m) Iva is- 2 . (n-m)1(<+m)! X

X r, h:(kk_,b-_1) F( (1.300)
G,, (kb ) fr (k lb )

If in system (1.299) 4(S) is replaced by (s) , in accordance with expressionsnm nm

(1.187), and Z( s ) by (s), we will obtain system (1.297), simplified for thenm nm
case under consideration.

Case Where the Line of: Centers of All the v Spheres Coincides With Axis Z.
Providing that the centers of all the spheres and the point of application of
the dipole are located on the same straight line, expressions (1.233), (1.235),
(1.237) are valid also for j = 1, and (1.236), (1.238), also for j = U. When
this fact is taken into account, system (1.299) becomes even more simplified.

r=O

) (2j-)(2-_ ) 1)(2)

t=O

jnj .- n,nnm j --f- ,mJh , a -nm~j, L(I J

" m a n Ya~nrn2J- + I a2J-
r=O =O

n: 8tn 8mnn2v-2

n 0O, 1, . ; m =-n, .... , n; j=2, 3 ... , ,-2.
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The case of the plane wave is completed by system "(1.301) if in the latter
Z( j ) is replaced by ZVj) and e(s) by 1(s) in accordance with relation (1.187).nm nm ' nm nm

Case of Concentric Arrangement of v Spheres. In this case (see Figure 1.5)
from equality (1.241) with the aid of notation (1.243) and

( - 3) r (k _b) (2n- )I! (2n + I)!!
G - 2 -(k _ b )(k2_ b)n (1.302)

the unknown Z(j) are determined from the following system: /88nm
7(2) 0(2) (1)(0)

Z() 'I + a (1)7 -+ Z2 )0, (1.303)

nm -n2v - 2 - nm=0,

0, 1, . .. ; m=-n, ... n; j=1, 2 ... -2.

The determinant An of this system, in contrast to (1.248) has the form:

--1 a 2 . 0 0 0 0 0 0

a -1 . O 0 0 0 O0 0

. .. . . . . . . . . . . . . . . . . . . . . . . . . . . .

.0()2j- 1) (2j) (2j + 2)
0 0,,j 0-1 0f ,' . 0 0 (1.304)

0(2 1) ( ()(2+- 2)
0 0 0 ,2j+ -- 1 . 0 0

0 0 0 0 0 0 . , -

n=O, 1,...; j==1, 2, v-2.

If hereinafter we have this determinant in mind, formulas (1.249)-(1.256)

will remain in force. The determinant An  is obtained by replacing the first

column of determinant (1.304) by the column Dnm, in accordance with equality

(1.257). Then expressions (1.258)-(1.276) will apply here as well.

Case of Two Spheres. In the case where the ideally conducting sphere has
one concentric spherical dielectric covering (Figure 1.6), we have a system of

three equations to find the unknowns Z j = 0, 1, 2:nm
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Z( lll (1 -Z(O - (l2)L=W

where the coefficients of the unknowns are defined by formulas (1.243), (1.322).

Because of the presence of a single covering, both the order of the
determinants (1.278), characteristic of the general case, and their number
decrease. We will write them out:

(D a? a .0 z 
no

0 0 -1

(1) 0)() 0(2)

--1 ' 1 I,,01a. n I , (1.305)

O 0 0 -1

-1 ° (
ad) (1) (D nonl)
2nn respectivey..

nm

902)

If the primary field is the plane wave field (1.186), then the determinants

i .) (i = 0, 1, 2) in terms of which the field components are expressed are

formed from determinants (1.305) Z() by replacing 4P) and 1) by (O)

and nl respectively.

It can also be shown if one takes into account relations (1.292), in

expressions (1.262) and notation (1.281), that the coefficients E(1), ( 2 ) in• nm
the case at hand have the form:
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Yon (') yin (N"v) yln, (N 1V)

o-v (N, v) C" (Nv) (

" () 4o~4 (N,) yo, (NJv)

l Yn (I ) yon (NJ.) yiC (N v)

-n (V) 4, (N v) C, (N1 )o S)4(N) Cn (N 12)
YIC,, Yn() Yo1P,9(N1 ' YOC (N 1v)

0 nt, (N1 ) C (N)
0 -n (N 1a) --0 n (N a)

After expanding the determinants and transforming expression (1.306), we can /90
write in the form analogous to (1.284):

y,&0 (v)A + , (v) A
Y, Y',, (1) A + (V) A 2

(2) y ,, (0) A, + C, (')A

where
A, = Y,, (N, v) C (N a) - 9;, (N, a) C (N,v),

Az = y, C,, (N v) 9, (Na) - ,,(NJV) (Nia)],

A 3 = ' (N'v) C,. (Na) - 9, (N a) C,' (NJv),

A 4 = y [Cn (N,-) ,, (N1 a) - 9,, (Niv) n. (NJa)].

Case of a Single Sphere. This case is characterized by the absence of any
covering on an ideally conducting sphere (Figure 1.7) of radius bl. Using

relation (1.69) with v = 1, and assuming by definition that

we come to the equality

B(O _ r, (kob) Ao)G,, (kAb') 
(1.307)

into which system (1.291) degenerates.

From formula (1.307) it is now easy to obtain the expressions for the
coefficient B ( 0 )  (0), and also E ( 1 ) 7(2)_

nm nm Tnm ' -nl
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B'"' iko(pO) ( .. I P21 (kobl)
N (kobl)

B (o) iko I Pl 2n + I n (kobl) b)

S(u) h~i- 2n (n + 1) (kb n (k 1)

B() - ' )k n -- I b,, (kb 1)
2n(n 1) C'(kobl)

) aoko I p I (2n 1-) j,,(kobj)n (01 ) 2n (n + 1) h,, (kobl) ,

(o) , -n+ 2n + I j,, (kobI)
nl ( = - 2(n (n + 1) h, (kob) '

) n (kobl) /91

cn (kobl)
p(2) j. (kobj)

S h,, (kobl)

Here, for the coefficients ) for other values of index m, relations (1.255),

(1.256) are valid; for , (1.259), (1.260); for (),(2) (1.261).

Let us note in conclusion that in this special case as well, formulas

and expressions coinciding with those known from the literature were obtained.

5 1.8. Computational Aspects

The chief difficulty in solving the above discussed problems is the

solution of infinite algebraic systems (1.95), (1.153), (1.190), (1.193), as
well as systems corresponding to different special cases of relative positions

of the spheres and their dielectric properties, discussed in § 1.6 and 1.7.

In view of the identity of the approaches in the numerical realization of

the solutions of all the indicated systems, we will indicate it only for system
(1.95).

We first transform this syster Thus, multiplying both sides of equality

(1.95) by matrix (1.118) a(7) {(()}, s, j=0, 1, .... 2v-1; n=0, 1,...

(-)s+ Ja(J) ... -. (1.308)

--n -an 'a-2-)
]=0
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and summing up over s from 0 to 2v - 1, by virtue of the relation

2-1

X -(n(n) a

s=O

resulting from expressions (1.106) and (1.118), we will obtain

2v-1 oo
Z' - -ZfUEi=AR (1.309)

__ n, -- Anm,
1=0 I=0=-r

n=O, I, ... ; m=-n, ... , n; j=0, 1, ... , 2v-1,
where

2v-1 (1.310)
- ,Ar inms sj,

s=0

2 -1

s=O

System (1.309) may also be written in the form of.a single functional /92
equation in Banach space Z2"

Z -- EZ= = A.
(1.311)

Indeed, from asymptotic representations of modified Bessel and Hankel
functions, lemma 2 of § 1.2 and expression (1.308), we have the inequality

I B'I< const1 , (1.312).

which in turn, by means of representations (1.310) and estimates (1.122), (1.102)
with limitations (1.133) and b1 < hi, leads to the following:

lI < const 2, (1.313)

. .E ,,n <const. (1.314)
r=O0=-rn=0 m=-n

The last of relations (1.314) signifies that E is a completely continuous

operator in 12
The chief requirement placed on the numerical algorithm of the solution of

system (1.309) is the presence at each step of computations of a priori estimates
of the convergence of the operations performed.

p 93



Thus, on the basis of the fact that any completely continuous operator in

Banach space admits of representation in the form of a sum of a finite-dimensional

operator and a convergence operator, determined in the corresponding subspaces
as a result of standard [40, 41] transformations which are omitted here we

arrive at the following computational scheme for solving system (1.309).

1. An no is chosen such that
0 2-12-1 v- M n

1 o "V ,lm = q < 1. (1.315)
1=0 j=O r=nf0+ 1=-r n=n,+l mn=--n

2. Systems of algebraic equations with respect to the unknown f(j) and

G(sj) are solved:
nrZnm-

s=o r=no+l =- (1.316)

n=no + , no + , .. .; nm=-n, ... , n; j=1,, ... , 2v- 1,
2v-1 00 pC_(s]) C ,,'(sd)E (dj) T(sJ)

'Cl- Upr p, E-- m,, (1.317)
d=1 p=no+l r=-p

n = no+ 1, n+ 2, .. ; m = -n .... , n; c= 0, 1, .... , no;

l- - .... r; s, j= 1, 2, .... 2v - 1.

By virtue of inequality (1.315), the operators of equations (1.316), (1.317) /93

are convergence operators in space 12 The solution is found by the method of

successive approximations. It is known that the inequality

IXk, - x* < (1.138)

will be fulfilled [49] when

n 1 8(-q) (1.319)
In q !xoI-Xllx'

where xk is the k-th approximation, x* is the exact solution, 6 is the specified

computational error, and q is a parameter defined by equality (1.315).

3. We calculate R( s j ) and F j )
TZnm nm

2ln-1 o p

, = + E _,- oE(sd) (1.320)
d=Op=no+l 1=-p

=0, 1, ..., no; I=-, . I t; s, j= 0, 1 . 2v-1;

+ A + 1 E , (1. 3 21)
Fnm = A(ntn ---. w "6W .iWm ,

s=O "=-no+l l=--V

n=O, 1, ... no; m., n; j=, 1= -..... 2v- 1.
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4. A finite system [50, 38] is solved with respect to the desired unknowns

Z() for n < n;

nm -clnn n

s--t-=or=- (1.322)
n=O, 1, ..... no; m=-n, ... , in; j]=0, 1, ... , /v-1.

5. The unknown Z )  for n > n are found in terms of the z(j) alreadynm 0 nm
found in par. 4 with the aid of expression

s= I=0 t=-, (1.323)

n= n0+ n+2, .. .; m=-n, .. ., n; j0, 1, . . . 2v - 1.

It is convenient to check the final result by applying the reduction method
directly to.system (1.95).
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CHAPTER 2

SCATTERING AND ATTENUATION OF ELECTROMAGNETIC
WAVES BY AN ARBITRARY SET OF SPHERICAL PARTICLES

§ 2.1. Set Of v Spheres In A Dipole Radiator Field. Statement Of The Problem.

Theoretical studies dealing with the scattering of electromagnetic waves
by spheres arbitrarily arranged in space, with consideration of their mutual
influences, were initiated by the well-known work of W. Trinks [13], in which
this problem was solved for the case of two spheres under the condition that
the incident plane wave propagates in the direction of their common axis of
symmetry. 0. A. Germogenova [15] extended Trink's solution to the case of two
spheres of arbitrary diameters arbitrarily arranged in relation to the wave
vector of the incident wave.

G. A. Shebeko [51] ,treated the same problem by assuming that the incident
field is produced by a dipole radiator located at some point of space outside
the spheres. Limitations were imposed on both the dipole orientation (moment
p of dipole assumed to be collinear with the common axis of the spheres) and
the electromagnetic parameters of the spheres (the spheres are assumed to be
ideally conducting). In [52, 9], Ye. A. Ivanov removed these limitations, and
obtained expressions for the radiophysical characteristics of two spheres in
the wave zone.37 Thus, the problem of scatte-ing of electromagnetic waves by
two spheres may be considered solved in a theoretical sense.

The solution of the problem of scattering by an arbitrary number of spheres
was treated in two studies: [22], which solves the problem of diffraction of a
linearly polarized plane electromagnetic wave by several ideally conducting
spheres with their centers on the same straight line; 5-, which constructed
a solution for the case of a dipole radiatorl arbitrarily situated and oriented
in space under the condition that the spheres are ideally conducting; [56],

in which the problem under consideration was solved in general form without
imposing any limitations on the dielectric properties, size and arrangement of
the spheres, or on the type and orientation of the incident radiation.38 In
addition, [56] gives expressions for various electromagnetic and radar charac-
teristics of a set of spheres in the long-range zone.

-l

37See also [53, 54].
3 8See also [57].
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0 Let us turn directly to the
zo z problem formulated in the title of

this section.

0 Let v spheres (Figure 2.1) be
0, arbitrarily arranged in infinite space

Z(medium zero), the j-th sphere (medium
j) having radius b , the center at

point O., and complex permittivity

/ and permeability Ej and Vj

respectively (j = 1, 2, ... , v). We will

/ y also assume that at some point 0 of
medium 0 there is an electric dipole of /96

/ (0) xi moment p arbitrarily oriented in space.39

Xi M fThe problem of determining the electro-
magnetic fields in each of these media

zA is raised.

ros 0 We introduce 2v + 1 rectangular

• s ~YS Cartesian coordinate systems.

XS M System X 0 YZ0. Axis Z0 will be

drawn through point o perpendicular to
vector p, add axis X0 parallel to

vector p. The origin of system 00 is

chosen arbitrarily on axis ZO.  We will
Figure 2.1. Set of Spheres in a
Dipole Radiator Field. denote the distance 00 j by r0j and 000

by h.

Systems X.Y.Z. (j = 1, 2, ..., v) are obtained by a parallel shift of

system XOY 0Z0 into origin Oj.

In, each of the Cartesian systems X.Y.Z., the spherical coordinates rj,

e., 4 (j = 0, ,'..., v) are introduced; 0 < r. < =, 0 < e. 4 , 0 <~ . < 27.

In addition, by rsj, sj, sj are denoted the spherical coordinates of origin

0j in a'system with origin 0O (s, j = 0, 1, ..., v; s : j). We will also agree

on the numbering of the media considered.(j = 1, 2, .,., v). Thus, we will

39The same.remarks apply here as in the statement of the problem in § 1.1 (see
references on p. 5).
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number in the order of nondecreasing r0j, i.e., the first medium taken will be

the sphere whose polar radius is the smallest of all r0j (j = 1, 2, ..., v),

the second medium will have the smallest of all r0 j (j = 2, 3, ..., v), and so on.

Systems X!Y!Z! (j = 1, 2, ..., v). Axis Z! will be drawn along the straight

line 0.0, axis X! in plane X.0.Y. perpendicular to Z! and will be directed
13 JJ J 3

toward the side from u ,h the observer sees the rotation which superposes
axis Z. on axis Z! at an angle smaller than r taking place counterclockwise,

J J
and axis Y!, perpendicular to axis X! and Z! so that system X!Y!Z! has a right-

-handed orientation.

We will denote distance 0.0 by h , the angles between axis Z! and vector
3 1

p by 1j), and the angles between axis Z!, Z. and X!, Xj by t. and Xj respectively.

Relating to medium j (j = 0, 1, ... , v) the function T. (1.5), (1.8) in terms3-
of which the components of the electromagnetic fields in each of the media are
expressed by formulas (1.2), we can formulate the problem under consideration as
follows:40

AT+k)T =O, j=0s, 1, 2, ..... , (2.1)

qoTo= qT1 j
O(rjTo) a(rjTj ) for r b, j = 1, 2, .... ; (2.2)

Orj Or1

Oro ikoo = o

To solve the problem, we will require more general addition theorems than those
obtained in 1 1.2.

§ 2.2. Addition Theorems /9:

We have the problem of obtaining formulas for reexpanding the functions

j (kr )P (cos )e imms and h (kr )Pm (cos 6 )eims , given in the coordinate
n s n s n s n s

system X Y sZ (Figure 2.2) with respect to the same functions in syste Xj Y.j Z..

To solve this problem, we will use the same reasoning as in the derivation
of analogous theorems in § 1.2. The difference lies only in the fact that in
the case at hand, we choose point A (in the notation of § 1.2) in plane R drawn
through the straight line 0 0. at some angle 8 to plane Z.0.0 Z . As in § 1.2,

s 3 3 3 ss
we assume that angle 0 AO. is a right angle.

s j

40Here qj and kj are defined by expressions (1.7), (1.1).
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Continuing to follow the reasoning
of § 1.2 with the necessary correction

Zs ,Z of the operations, in accordance with
(ijc j) the present selection of the position of

yj point A, by virtue of the arbitrarinessof distances AO , angle 8 and orthogon-

ality of the tesseral functions, we
arrive at the additional theorems for

the functions h (kr )Pm (cos e )eims
n s n s

However, for the functions j (kr )Pn
An s n

I (cos s)e , one can make use of the

integral representation [9, 29]

Xs (rsss) j,, (kr) P" (cos 0j) e "I j

eR cos TiP, (cos a) eim sin a dm dp,
o 0

Figure 2.2. Coordinate Systems in the readily obtainable conversion /98
the Addition Theorems. relations

rj Cos s r cos r + irtos m,

where cos, Cos , cos a + sin , sin a cos ( - 3), p- j, s, js,

and also the expansion

and X P (cos a) e"(%-s),

P (cos ')P, (cos a) -- M m -t o )(

=1n- n (COS ') (2.3)

where4 1

nt - 12 ( - 1Om pn (x) PT (x) PI-" (x) dx

m-! (2.4)
( -1 / m) ( / +)'( --+i)! C(n, , a, a; m, -I, m-1)X

X C(n, s, ; 0,.0, 0).
41Concerning the functions C (1 , z2 P Z; j, k, j + k) see p. 14.
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Thus we have:

Theorem 1.
j,, (krs) PI," (cos O0) e'l"s 

= . 4 ~,,) (kr)P (cos 0)j) e" , r0 r,

where rt+

9 ,,,-(2v + 1) 'i + -
nj,(krs,) P"' (cos j)Xo=. _ , (2.5)

X exp [i(m - )?s] I .

Theorem 2.

h, (krs) P,7 (cos 0,) e"' =

-Y ',,inj, (kr) P! (cos Oj) e"'J, rj < rr , ;,

where +"
()', -(2+ 1) i'+'-h (kr 1)P'-t (cos ,) X

X exp [i(m - l) Tl 8' r. (2.6)

Theorem 3. h,, (kr) Pnm (cos ) em;, /99

(2.7)
_= R.. ,h, (kr) Pi-(cosO6)e'm--O'i, r, > r(27

where
t-n

R (2 -- 1) i + j, (kr,) P- (cos s,,)cxp (il, 1 )'f . (2.8)

Let us note in conclusion that analogous theorems are also given in [9];
they differ from ours in the derivation.

§ 2.3. General Solution of the Problem. Components of Electromagnetic Field

We will seek the solution of problem (2.2) in the form

Too Y Bnh, (kor,) Pn (cosO,)e-ms for 7= 0,
,~Tj S=, n=0m=-n (2.9)

A nj (kjr-)Pnm(cos O)e'm'j for' j=1, 2, .. , v.
Sn=O=--n

Here the expression for T00 is determined by formulas (1.75)-(1.82), but

in coordinates r0, 00, .0:

Too -- V V A o jn(koro) Pm(cosOo)e'mO, ro < h, (2.10)

S10I A,0 r < h ,
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where
-n(n+l)cA,, for m=-1,

(Ar= ~ aooAi. for m=1l;
0 for ImI=Sl,
n==1, 2, ... . (2.11)

A,= iko I 1(2n + 1) , (kh ikoo IpI (2n + 1)}
hn (n + ) n(n + h(koh) ,

a 00, 00 being defined by formulas (1.80). For r0 > h the expression for TOO
has the form

TO , nnh. (kor o) Pam (cos 0o" et (2.12)

where A(0) /100
t) = an t1,m
a,,.m tin ,

ikoIp (2n+ 1) ikoolp I p (2n + i) (2.13)
hn (n + 1) n (kl) - n(n - 1) +n (k )

In order to make solutions (2.9) satisfy the boundary equations (2.2),
we also need the expressions for function To0 in coordinates rj, j., 4j (j 1,

2, ... , v) for r. < h ( j ) .

We will use the coordinate system X!Y!Z' for this purpose. We resolve the

dipole moment vector p into two components relative to axis Z!: a horizontal

component plj and a vertical component p2j:

I PjI = P sin i, P2j I =p I P cos ). (2.14)

It is easy to show that angle ) may be determined from the equality

Cos Y() roj sin Ooj cos yoj

r + h - '2hro cos 0o (2.15)

Then by analogy with expressions (1.75)-(1.82) in spherical coordinates of
system X!Y!Z!, function T00 will, take the form

1(2.16)

where
-n(n+l)3ooDI,,j for m=--l,

D1(O D 2,, for m = O,
,)oDIi for m==1, (2.17)

0 for ImI>1.
hD,1  ( iko Pl (2n + 1) ,; (k ikoo I Pl I (2n + 1)
h )n(n + 1) h n(n-t- ) h, (2.18)
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ikC, I Pz I (2n + 1)ShQ(i) h (koh(), 0. (2.19)

If we now switch to spherical coordinates of system X Y Z. with the aid of

addition theorems42 (1.64), we obtain
Co n

To(= ID,b(-')j. (korj) P' (cos 0) etx9, rj < ((.).
n=Om=- X=- (2.20)

where b ( - 1 ) is.defined by relation (1.66).
Xnmj

Making solutions (2.9) satisfy the boundary conditions (2.2) with the aid /101

of addition theorems (2.3)-(2.6) and considering the orthogonality properties

of the Tesseral functions/ and also the substitution

() - z() / (n--m)! .* (2.21)m Z,-- m jn +m) j" (kob), (2.21)

after transformations we arrive at the system
4 3

zO )= Z +L ](s) ,(1) (2.22)
•. -W Inm nm

s=lx=O l=-

j= 1, 2, ... v; n= 0, 1, .. ; m= -n, .... , n;

where

L (s, - (c - l)! (n + m)! j (kobs) (sj)
Vtm - (r+1)(n-m) j (kobj) b-'(IsJ)'

j(j) 43)
"nm nI T Y' D b ,mnl j ,

A ( h -ohM (kob ) joo) (kob )

j = 4qj (k/bj) C-n (kobj) r- q (kq) (kjbj),
(2) _ .,(2.23)

X- qoj. (kobij) (k1 -b) - qj. (kjbj) (kb(224).

j nBy replacing Lj by . Tn jj - Ij yn (oj.

Th( ) is determined by any of the equalities:
nm

(j) qoh. (kobj) U) qoJ (kobi)
AM- qjjn (kjbj) nm qjjn (kj X

qojn (kobj) (2.24)
(I - 8Jnj mnlND

$=1-=01=- 1=--

42By replacing c+ by .

43The function "* (z) is defined by expression (1.91).
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A ,,C, (kOb 1) B + (kb/j) : 'o

>K (j I+ I (2.25)

In the course of the transformation, we assumed:

'A) 0, (2.26)

i, (kjbj) # 0, (2.27)

# (kjbj) 0. (2.28)

Inequality (2.26) is unconditional and fulfilled for all j and n. Proof /102
of this statement follows from the proof of inequality (1.112), if in the latter
one replaces qj, kj, kj+l, bj+ 1 by q0, k0, kj, bj, respectively. As far as

relations (2.27), (2.28) are concerned, they are valid only provided that
Im k. 0 0. If, however, Im k. = 0 for a certain j, then one of the inequalities

(2.27), (2.28) may fail to be fulfilled. 4  This case will subsequently be
analyzed separately.

System (2.22) admits a simple functional treatment if by analogy with § 1.3

we introduce4 5 into consideration the Banach space 12, consisting of oinfinite

three-dimensional matrices Z =z(n ), n = 0, 1, ... ; m = -n, ... , n; j = 1, 2,

... , v with Z ) = 0 when Imi > n, with the normnm

Iizl I/ 11, <oo.
j=1 m=On -n

In terms of space 12, the following operator equation corresponds to system (2.22):

Z= TZ + <1. (2.29)

It is known [41] that for equations of type (2.29), where T is a linear

operator defined in space 12 and representing it in its part, and 2C1 2

44The two equalities n (k b) = 0 and 4n(kb) = 0 are impossible simultaneously,

since otherwise this would signify the presence of multiple roots in the

function *(z), which is incorrect [42].n
4 5See p. 32.
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the Fredholm alternative is valid stating that either equation (2.29) is solvable

for any C 7 or the homogeneous equation

Z-= TZ (2.30)

has nontrivial solutions.

By analogy with the .reasoning46 given in § 1.3, it can be shown that operator

T and the free term D will meet the above requirements if

V N7 L(sj)nM1 2< (2.31)
I1=0 r =-n r=O I=--c

-
' < 0o (2.32)

n=O 0 = r=-n

respectively.

Thus, from the estimates /103

<cons I kobj 12
< onst,(2n + 1)!!] 2

ftsj) (n - m)! ( + )1 ( 1 )2 (2n + 2 - 1)!! (2.33),mTI < const (2n + 1) (n+m)!(,-1) rIkorsi. 2+

resulting from asymptotic with respect to the index expansions of the modified
Bessel functions, from lemma 2 of § 1.2, and from Stirling's formula and

inequality (1.132), we have

L() I < const 3 (n +s- )5 ( bs ) (n+)! (2.34)
\ rs]l \rsj/ t nl

From relation (2.34) by analogy with the proof of inequalities (1.35) we have

the validity of statement (2.31) for bs + b < rsj, i.e., when the spheres do

not touch.

It can be shown that by using estimate (1.132) in the integral representa-
ml

tion (2.4) of 6 l and estimate (1.130) in expression (1.66), and also estimates
anT

analogous to those which were used in deriving relation (2.34), we will get

< on(3) I k bj 12"
IA <const4 [(2+)i[(2n + 1)[!12

(n - l)1 (n - m) I

I D <consts (2n + 1) 
(2.35)

omj .< const, I koh(J) In

46See pp. 37, 38, 32.
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These inequalities in turn lead to the relation

(,, .const6  j . (2.36)

If one considers estimate (2.36) on the left of inequality (2.32), then,
provided that

bj<hj, j=1, 2, ... v, (2.37)

we will arrive at the required relation (2.32). Let us note at this point that
condition (2.37) is equivalent to the condition that the dipole does not touch
any of the spheres considered.

Thus, Fredholm's alternative is applicable to system (2.29). We will show
that the homogeneous system (2.30), or, what amounts to the same thing.,4 7  /104

nj s=1 0--r

j== 1, 2 .... v; n=O, 1 .... ; m.= -n, .... n,
(2.38)

has only a trivial solution.

System (2.38) corresponds to the homogeneous boundary value problem (2.1),
(2.2) provided T 0. From the uniqueness theorem of the solution of this

problem in the multiply connected region and from theorem 1 of § 1.3, slightly
corrected for the case at hand, it follows that there can be no relations other

than To = 0.

This means according to formula (2.9) that

SBh,, (kors) Pnm (cos Os) eim's 0.
s=I n=0m=-n (2.39)'

If we now write expression (2.39) in the coordinates of the j-th sphere with
the aid of addition theorem (2.5) and correspondingly change the order of the
summation, we will obtain (2.40)

=t -- = t (kr) ( r -. B1=, X (2.40)$1n=O-m=-n

X ,',,m, (1 - 8,j)] P,(cos 0i) e"'j= 0.

In this case, the validity of the change of the summation order is substantiated
by the analogy with theorem 1 of § 1.3 with consideration of relations (2.33),
(1.29), (1.132).

4 7The two dashes above the symbol will denote quantities pertaining to the
homogeneous boundary value problem for equations (2.30).
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It follows from equality (2.40) that the expression in square brackets
becomes zero:

-- h (kr) + (kor) " Mi , ,,,,1 - )--- 0. (2.41)
S= n=O m =-n

Comparing relations (2.41) and (2.38), we find

SJ) [ h, (korj) + j. (kori) (2.42)

whence B 0.

Indeed, if A 2) = 0, the required result. follows directly from system /10

(2.38); however, the case A ( 0 is completed by inequality (2.26) and by

the linear independency of the functions in square brackets of equality (2.42).

Thus, it has been shown that system (2.22) is uniquely solvable in

2

Here, as in the case of 2, it can be shown that system (2.22) is also

solvable in 12 by reduction.

If we now perform the substitution

Au) V() I/'(-n-m) , 

m -- nm +m)I (kb)

in expressions (2.24), (2.25), then, proceeding from the condition that Z =

m() Cl2, taking into consideration notation (2.21), one can easily obtain
nm 2

the following estimate:

Y=(Y E 712

By virtue of Theorem 1 of § 1.348 these estimates prove that expressions (2.9),
(1.5), (1.8) together with relation (1.2) are the desired solutions of the
problem formulated in § 2.1.

Let us now consider the case in which one of equalities (2.27), (2.28)
does not hold. Consider, for example, for certain j = j0 and n = nq (q = 0, 1,

S9(kj0 b)=0 . (2.43)

48Slightly corrected for this case.
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Rearranging equations (2.22) by considering relations (2.43) to resemble (1.152),
(1.153), we obtain a system corresponding to a case under consideration:

z -- V Z+ , ' (U) (2.44)

s=l '=0 l=----r

j 1, 2, ... v; = 0, 1, . .; n= -n, .... n,

where

L,~= /= --- - ' ( + )! J(kob,) W(, 1 (1- 6sj)X
[ (kobj) 8)

x j(. (kobj) afl ] (2.45)
X . q=0 h,,q =0

A (j) being found from equation (2.25).
nm

If, however, inequality (2.28) is not fulfilled, i.e., for certain j = j0 /106

and n = n (q = 0, 1, ... , p) the relation

' (kob.o) O,
q J (2.46)

holds, as a result of the same transformation as in the preceding case we

arrive at the same system (2.44) but with a different expression for L
(sj) * "

tlnm

(LrsP, / ( - I)! (n+ m)! j: (k,,bs)
(- + ) (n - m) j (kob1) - s) X

/Ijj ( I q)A(2ir P (kolb) jj 11 (2.47)

nj q=o (k,,bj) o

In this case (2.46), A (j) will be determined from equation (2.24). The
nm

expressions for the electromagnetic field vector components for each of the v
spheres are obtained from formulas (2.9)-(2.13), (1.5), (1.2); for medium 0, by
dividing the entire region 0 (Figure 2.3) into concentric spheres of radii

r0j(j = 1, 2, ..., v) with center a point 00, with subsequent application of

the addition theorems of § 2.2 to each of the regions 0j j + (j = 0, 1,

v). Here, 0j j + 1 (j = 1, 2, ..., v - 1) denotes the region defined by in-

equalities r0j < r0 < r0j + 1  rj > b., rj + 1 > bj + 1  001 denotes the

region defined by inequalities r0 > rOy, r > b , Ov + 1' the region defined

by inequalities r0 > rOv. rV > b . On the other hand, the expressions for
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vectors E(0s) and HO0 s). in medium 0 may be obtained in the same manner if the
potentials of the secondary field in medium 0

U _= Bns('h n (kor5 ) Pm (cos,)e) e's,
0 s=l n=Om=-n

(2.48)

V 0  = B,, (kors) P. (cos s) elms
S s=n0Om=-n

are substituted into relations (1.2), written in coordinates r0, 80, 0, and

the indicated differentiations of the expressions h (krs )Pm (cos 6 )eimo5 are

performed according to the rules of a complex function. Moreover, instead of
different representations following from the use of addition theorems, we will
have a single expression for the entire medium 0. To realize this approach,
it is necessary to have formulas of the type

[rs, cos ,, emYs, ]  f (ro 60, .%).

These formulas are easily obtained (Figure 2.4) by methods of analytical
geometry. They are:

r, Cro - 2 -o-, r, sin' ,,

cos Os = cos o cos Oos sin o ssin 0os cos (o - fos).

COS 0S  . r  cos0 o  ros cos Oos
cos- (2.49)

im, _ r0o sin Oo
e''o - ros sin 60setIosIm

Ssin o -- 2roros sin , Osin 0s cos (o - i 0s) rs sin 2,]

We will find the components of the secondary electromagnetic field in the /10
long-range zone of medium 0.

Thus, it is easy to determine from expressions (2.49) that when r0 > h,
the following relations apply:

'Ps"', Os~Oo, r,-ro--r, oscos. (2.50)

Hence, considering relations (1.68), (2.48) and (1.2), as a result of
transformations we have in the long-range zone:

E(e) - ro [S2 (0, TO) + iXOS (0o, TO)1,

(2.51)
E' . [iS4 (00, TO) - xoS5 (0o, o)],.
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eiro *L o0.fa) - S4 (00 , TA

H( ro [-o S,(0, ) + iS(0 0 , ) (2.51)

where K0 is defined by formula (1.169),

S2(00 , T n -W (0o,)
s=1ln=O m=-n~- - ,tm u -m

S3 (0o, o) = n (v)t, , wi ns 0, 'Po). (2.52)

S4(00, fO) = A_ Bnrn ( Wnms (e, Ao),

s=1 n=om=-n

W n() t0 -O0 o W(ms ( 0o, yo) ,

W ai ,(0o, To)= i~no W.o w(60

Ws (0 o, o) = exp (-ikoro cos rs (0o, 0)

From expressions (2.49), (2.53) it also follows that /109

WnU (0o, yo) ikorose-i~'o'os cos6s[sin 0 cos 00s -

- cos 0 sin s cos (To - yos) .Pnm (cos 0o) e m 'o +

e-IkrS cos 3 , I 0(2.54)W(2) Cos _0

),,s (0o, To)= koroe - to'os coso sin 0o sin (y - f os) X

X Pn, (cos 0) t e - ikor os sm~o,", (00) e. i.

o<x0( °  o (2.55)
IEI -o. xo0ool H,,o -0,

E + H 'Hyi = 0.

Relations (2.55) show that as in the case of one or two spheres, the field

in the long-range zone has a transverse character, and vectors E C0Sand H (0 s )

are mutually perpendicular.
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Figure 2.4. In Reference to the
Expression for rs, cos @s,
im S A
e in Terms of Spherical

/Coordinates r0 , O' O0

Figure 2.3. In Reference to the
Determination of the Components of 5 2.4. Arbitrary Set of Spheres in
the Secondary Electromagnetic Field the Field of a Plane Wave.in Region 0 of Medium 0.Sj+ o The case of a plane wave is the

limiting case for the solution con-
structed in the preceding paragraph. We will direct dipole p along axis to

infinity while preserving its orientation. We thus obtain a plane wave pro-
pagating along negative axis ZO, whose electric vector is polarized along axis
X0 . The components of the incident field of the plane wave will, according to

relations (1.190)-(1.196), have the form4 9

Ho' = H'= E = Ezo = 0, (2.56)

H()= -- ikoacE e-"-zo

where
elkoh

(2.57)

49Considering the notation used in this chapter.
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Essentially following the reasoning given in 5 1.4, one can obtain the
electromagnetic field components in each of the media in the case where the
primary field is a plane wave field of the form of (2.56).

To this end, in the expressions corresponding to the dipole radiator it is /110
necessary to replace A(8) A(s) B(8) B(8) by EA() E A) E1 B(S)

nm(u)' 'r(V)' m(U)' I (m( EEA() EIB ()
EIB() , respectively. nm(u) nm(u)

(s) qo0hN (kobs) -(s) qoj,, (kobs)
nm- qsWj (ksb) n qjn (ksbs) X

U S) qoj,(kobs)'

X VI "nm 14 (1 - s- qsjn (ksbs) mnls
f=1 =0=-r =-1

s= 1, 2, .... ;
(2.58)

B(] __ ()/( --h(m)! .*obj)
nn- m ¥(n + m)! "

where ZJ) is determined from the systemnm

nn m - C1 tim -- . (2.59)
s=--=0I= -r

j= 1, 2, ... ; n=O0, , .. ; m= -n, ..... n,

L(sj) is given by formula (2.23), and expressions analogous to (1.188) are denotedtZnm

by (j) (0) b(-1)
nm ' nZj' mnZs"

Let us find their explicit form. Thus, from equalities (2.14), (2.15) it
is easy to find the following estimates for h -*:

pl==pl I [1o( +-),1

1P2j 1IP10 )1, (2.60)

whence in the long-range zone approximation one can obtain

IpljI Ipl1, IP2j I 0O (2.61)

If now in expressions (2.18) we use an asymptotic expansion of the functions

Sn(k h and h n (k h for h ) - according to relations (1.168); considering

h J)
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the equality
It(= j/h 2 _,- r1 - 2roh cos 0o],

we expand in a series of type (1.13) in the functions j C(kor)P (cos eOj) for

r < h(J then use relation (1.168) again this time, however for h *+o; then /I
Oj
contract the series obtained as the result of the indicated transformations,
allowing for the expansion

e-I/oo; cos o/ = i - ' (25 -}-- 1 ) j, (korol) 1), (cos O0j),
t-O

we obtain

Dr Ee-Ikor cos lg,,, (2.62)

where gn is defined by formula (1.187).

By virtue of relations (1.187), (2.17), (2.19), (2.61), expression (2.62)
in turn leads to the following:

() -ikoroIcOoS (. (2.63)

Hence, we obtain from formula (2.23)

S/(n + m)! exp(-ikoroicoOo) - (2.64)
n (n - m)! n (kob ) ±1+nj /I j) I

where mn(-) is the principal term of the asymptotic expansion of b ( - 1) when

h +=. However, when h , e ~ 0, Xj~ 0 and Pnm (cos 6j) ~ 6Zm [26]. Hence,

~(-1)b ." Thus
mnlj

(J) ,) LI (n + m)!. exp (-ikoroj cosOo]) ((0)
^" V (n - m)! (k ) (2.65)

and
(s) q0h,, (kobs) (s) qo,, (kobs)
nm - qsj,, (ksbs) n'mT qsn (ksb,)

X, - q ,(ksbs) exp(- ikoro cos O)) Aq°

System (2.59) differs from system (2.22) only in the form of the right member.
By analogy with inequality (2.32), it can be shown that

,'i <, oo,

l In=-n

whence follows the unique solvability of equations (2.59) as well.
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The validation of the solution, performed for the case of the dipole
radiator in § 2.3, is used here without any modifications.

It is now easy on the basis of expression (2.51) to write the components of /112
the secondary field in the long-range zone of medium 0 under the condition
that the incident field is given by relation (2.56). We have:

E6~) s El 2 (00, TO)+ iXS3 (00, To)1

He (s6o ( Oo

Hs)o  r0 o (2.66)

S[-L E, 32 (0o, O) + iS3 (o, To)

where

S2 (0o, o) = (u)- Wnm( (o0 , )'

s=l n= m=r-n

n n

(00, TO Z nrm (.)t Wnms (0O, O),

$s=1 n =0 = -n

S 4 (00 , 0o)= Bnrn ( nns (00o o))

s=1 n=Om=-

To conclude the present section let us note that all the arguments and
operations given above are valid only under conditions (2.27), (2.28). If one
of them is not fulfilled, either relations (2.43) or (2.46) apply. Accordingly,
in the system

nm --- z= St -m -- mz (2.68)

= 1, 2, . . . ; n=, 1, .. ; m= -n, ... n,

which in this case replaces system (2.59), it is necessary to use expression

(2.45) or (2.47) for L(sj)*  All the remaining formulas and relations remainTlnm
unchanged.
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§ 2.5. Electromagnetic and Radar Characteristics

Here we will follow the terminology and symbols used in § 1.5.

The intensity I(0e, 0) of the secondary electromagnetic field in the

long-range zone of medium 0 will have the form

(0 )- k2 (0S, , o) +l IS,(o, o) ), (2.69)

where

S7 (00 , ) = S2 (0, ) + ixoS 3 (0o, 0O), (2.70)

S 8 (00, T) = iS4 (00 , To) - XOS (00 , co).

Expressions (2.67), (2.70) being considered, expression (2.69) will take the
form 2 v m n

fI (r 2) = - n s) () m ) s (u)W s o ) +
k0 r=1 s=ln=Om=-n

2

i+ oB(s) ( (3-) (0o, o)] (2.71)

Such important field characteristics as the scattering diagram F(O0,' 0) are
also related to the field intensity (2.71)

F(00 , ) = (koro) 2 jI(6o, o) (2.72)

and the differential two-position scattering cross-section a1 (D 0 0)
ob (0o, 0) = 4rI2 (60 , yo), (2.73)

To determine the backscattering cross-section o', we introduce the
following notation:

Ws, (0, 0) V= e -k 0 r0oos Co 60Ss

W (0, 0) e- o s Cos, (2.74

where

1 fo r m=--1, n>O,
-- 2ikorosinOcos for m=O, n>O,

VIns" -- n(n+l) for m==1, n>0,

0 for I Im= 1, n=O,
for tml>l, n>O,
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1 for m==-1, n>O,
2kora.sin 0,, sin po, for m=-0, n> O,

V(2s = (n ) + for m I, n >O,

for ImlI=1, n=O, (2.75) /114

for ml >1, n >O,

Expressions (2.75) are obtained from formulas (2.54), (2.49) by considering
relations (1.207) and

P (1) 6
n m0

Then by virtue of notation (2.70), (2.52) we will have

2 v o 1

kB i- -ik0oos cos 0sX
0 1=1 s=1n=O m=-l (2.76)

X , IIrn(u ) - g (s )

The effective attenuation area 50 a' is defined in terms of expressions

(1.129), (2.70) as follows

a'2 = a 2 (Tb2) (2.77)

Using relations (2.67) and also

lV(W, O)= (- 1 )n+m+' e'kors cosos 0 (J)

j=1, 2.

obtained from expressions (2.54), (1.220), Pm (-) = (-1)n6m0 and (2.75), after

transformations we will have

• 2= (-Re) eeloroscosin+,(-_1)m
o sn= (-m e) (2.78)

X I[ (U) Onms + i2oB , (v) Vn.

By analogy with (1.210) we introduce the notation:

50In contrast to (1.219), not normalized.
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2i - sgnm (n . m)l n (n + 1) b(s)-- m ) for m= +1
(2n + 1)ko (n-)!) for M

4iros sin Oos cos ~os ~ (s) for m = 0;

2i n - ' o ( (n tm)!n(n+ 1) Bn(s) for
2(2 + k2 (n- M) nm(v) for

4in-ros sin Bo si Yos B~v) for m=0. (2.79)

Then formula (2.78) for the effective attenuation area a'2 may be 
written

more concisely:
1-= -- (--Re) e os( 1) s  E2, ). (2.80)

ko s=0 nmO =-

Let us note at this point that iwhen e0s =-O; w, i.e., when all the spheres are

on axis ZO, the sum corresponding to m = 0 disappears in expression 
(2.80).

By analogy with expressions (1.223)-(1.225), the two-position scattering

cross-section ao'(0e, 0 ) will be defined by the formula

' (6o, C) - 4I S7 (Oo. yo) cos Oo cos ?o - Ss-(jo, yo) sin p i. (2.81)
k0

According to expressions (1.227), (2.74), (2.75), after transformations, the

radar scattering cross-section takes the form
v ~I

.r 1 r (-1)"(2nf l)e-k o'oscSos X (2.82)
S 4k s= I 1=0m=--1

X (2n + 1) ko ""(u)" V wis 2n+ 1) o (3I,,, >V 1,,. •

(l) .(2)
If in expression (2.82) we switch to the coefficients and (2)

nms nms

according to formulas (2.79), o'0 may also be written as follows:

0 I Ioy e os s(-1)" X

R0 s= 1n =Om=--I

( (2n 1)(E'nzs 1- 1,sr

(2.83)
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The scattering indicatrix y(eO, 0) and the dimensionless a' are

determined by relations (1.214). In this case /116

2 2ix v o

r 0 (2 R S (u)w o,) -ms )+
0 l=10 0 s=0n=0m=-n

2 (2.48)51
SB o W(v) nms (, sin 00 dfo d .

§ 2.6. Scattering and Attenuation of Electromagnetic Waves by an Arbitrary
Set of Ideally Conducting Particles

The solution of the problem formulated in the title of this section is an
important special case of the general problem, obtained from the solution of § 2.3 -

-2.5 for k 2 = i=, j = 1, 2, ... , v.

However, this method proves to be somewhat more complex than the direct
solution examined in § 1.7. We will therefore start again with the statement
of the problem.

Let v spheres arbitrarily arranged in space be located in a dipole radiator
field (Figure 2.1). Using the notation of § 2.1, we introduce the generalized
potential of medium 0, TO, which satisfies equation (2.1) and is related to the

electromagnetic field components by relations (1.5), (1.2), (1.7), (1.8).52

The problem under consideration is stated as follows: to find the solution
of equation (2.1) in medium 0 under the condition of radiation at infinity and

Sa(rTo) o+PoT=O for r = bj, j=1, 2, ... , v,
da' Or (2.85)

where a0 1 and 01 are defined by formulas (1.29). The solution is sought in the

form n

To = Too + B)h,, (kor,) Pn (cos Os) e"s.
s=1 Rn=O m=-n

(2.86)
Here the expression for TOO has the form (2.10)-(2.13) or (2.16)-(2.20).

51Expression (2.84) admits of integration in finite form. However, the extremely
cumbersome final relations obtained in the course of the transformations could
not be represented in the form of formulas of type (2.80), (2,83), and they
are therefore omitted.
521n medium j, j = 1, 2, ..., v, in view of the ideal conductivity of the spheres,
the electromagnetic field is absent and therefore T. 0.
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Making the solution of (2.86) satisfy the boundary conditions (2.85), using

the addition theorems and properties of orthogonality of Tesseral functions, and

also the substitution

(f) 7U ) M !n. .
am V (n - ji* (kob), (2.87)

after transformations we arrive at an infinite algebraic system corresponding to
the case at hand:

Z (s,=) Z(S' (' (2.88)

s=1 =Ol=-t

n=O, 1, ... ; m=-n, ... , n; j=1, 2, ... , v
where

Trsz rn (kob 1)  (n + m) I (: -1)!
, (kobj) (n - m) I ( + 1)

., (kobs) Wn i (1 - s ) ,i- (ko b)

4(Dij) (n + m)! rn (kobj )  (°)b(-

"m - -- ! Gn(kobj)j*(kobj) if-i

P, (z)) = ao,, (z) + 0o.in (z), (2. 89)

G, (z) = o,, (z) + o0in (z),

j*(z), (sj) D) b(-1) being defined by expressions (1.91), (2.6), (2.17),
n nmtZ' nZj mnZj
(1.66), respectively.

In the course of derivation of equations (2.88), it was assumed that

h,, (kobi) - 0, C' (kobj) = 0.

These inequalities always hold under the conditions of the given problem. Proof

of this statement is carried out by analogy with the proof of relations (1.89),

(1.293). Hence, in contrast to the case of dielectric spheres, no limitations of
the type of (2.27), (2.28) are placed on system (2.88).

In terms of space 12 introduced into § 2.5, system (2.88) will be written

in the form

Z = TZ + D (2.90)

The right side of equation (2.90) ¢ is an element of space L2 , which follows

from estimates (2.25) and
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r. (kobj) I kobjy I2
G (koby) <const [(2n + 1)!!]

(2.91)

'under condition (2.37).

As in system (2.29), operator T is completely continuous. Proof of this
statement follows from estimates (2.33) and (2.91), which in turn lead to
inequality (2.34) if symbol L is replaced by T in the left member of this
inequality.

Thus, Fredholm's alternative is applicable to operator equation (2.90). /118

Proof of only trivial solutions in space 12 in the homogeneous system Z = TZ,

and also the substantiation of solution (2.86) are carried out without any
changes in comparison with the case of dielectric spheres discussed in § 2.4.

Hence, system (2.90) as well as (2.88) is uniquely solvable in space 12, and

representation (2.86) realizes the solution of the stated problem. The
components of the electromagnetic fields in medium 0 will be described by the
same expressions as in the general case (§ 2.4). In the long-range zone, these
expressions may be represented by relations (2.51)-(2.54).

Let us now start moving the dipole p along axis Z0 toward infinity while

preserving its orientation. We thus obtain the plane wave (2.56), which propa-
gates along negative axis ZO with an electric vector polarized along axis X0.
The components of the electromagnetic field will be obtained from expressions

corresponding to the case of the dipole radiator by substituting B(s)  B(s)
nm(u)' nm(v)'

b (s) , (s) (s)by E m(u), EB Here E1 is defined by expression (2.57), B andb nm(u) E I H nm(v) I nm(u)

i(s) are the coefficients (s)B corresponding to the Debye potentials U and V,
nm(v) nm

B Z) /7-n)k! .. (2.92)"'n m V-Tn -m)! J" (kob,),

i(s) is found from the system
nm

n n V -VVs) if) _3(y, (2.93)
s= Ir=O 1=-r

n=O, 1, ... ; m= -n, ..., n; j=1, 2, ... ,

where
w () (n + m)! rn (kob) exp (-ikoroj cos 00 )  o)

, - (n-- m)iGn a(kobj) j. (kobf) an,

119



(0) is defined by expression (1.187).
nm

System (2.93) is obtained from system (2.88) by a passage to the limit
was done in § 1.4.

Under the condition that the primary field is the field of the plane wave of
the form (2.56), the components of the electromagnetic field of medium 0 in the
long-range zone are described by the same expressions (2.66), (2.67) as in the

case of dielectric spheres, the only difference being that here B is
nm

determined from system (2.93) in terms of relations (2.92)

The electromagnetic and radar characteristics of an arbitrary set of
ideally conducting spheres are given by expressions (2.71)-(2.84).

§ 2.7. Computational Aspect

The most complex stage in the numerical realization of the solutions
constructed in the preceding paragraphs is the finding of the solutions of
infinite algebraic equations (2.20), (2.44), (2.59), (2.93).

All of the above mentioned systems may be written in terms of space 12 in

the form of a single operator equation (2.29) with a completely continuous
operator T. In this form, this equation resembles equation (1.311) with a
completely continuous operator E, the latter equation corresponding to the case
of a single nonconcentrically layered particle. For this reason, the entire
computational algorithm described in sections 1-5 of § 1.8 may be transposed
here without any modifications.

The final results of the computations are conveniently checked by the

reduction method. Thus, if we denote by 12(0) and 12(1) the subspaces 12 of

the matrices respectively

Z = {Zz1Zi, n= O, 1, ... , p; m -, . n; j1, 2

and
Z(" ' =- X,',,, n= 0, 1, ... ; m= -n, n; j] 1, 2, . v

with [Z() for n < p

X(j) 
n m

0nm for n>p

and by R the operator mutually uniquely mapping space 2(0) in 2(1)2(0) 2(1)

Z(lp) = RZ(OP)
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it can be shown53 that the rate of convergence to the exact solution Z of the
reduction method for system (2.22) for trunction or order p is determined by the
inequality

IZ -RZ(O I < constl iRM 12]

+ const, I D) 12

-"n=pI = -

which, when estimates (2.34), (2.36) are considered and as result of cumbersome /120
transformations with convolusion of sums, may be represented in the form

IfZ-RZ o 11 < const 3 . n 6 (o) const4  n(b1 )",
where n=p+l n=p+l

b bi + bs b (2.94)= ax , = max b.m
s, = 1, 2., rs s, J= 1, 2, ..., J

For system (2.59), estimate (2.94) should be replaced by the following:

iz- R (P) I< const5  n( ). (2.95) 54
n=p+l

Let us note here that the series in the right-hand members of inequalities
(2.94), (2.95) may be represented in finite form by means of the relation

nmxW= em)[ XP1,

n=p+
+

where D(m ) is the operator jx d used m times in the function in square brackets.

If instead of equations (2.22), (2.59) we solve systems (2.44), (2.93), then
a suitable correction of the notation should be made in the estimates given above.

In the case of sufficiently small bo., such that an inequality of type (1.315)

is fulfilled for all n > 0, the iteration method with estimates (1.318), (1.319)
of the convergence rate can be applied directly to equations (2.22), (2.59),

53Using reasoning similar to that applied in analogous cases by the authors of
[41].

54The term with the factorial convergence rate was omitted on the right of
inequality (2.95).
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(2.93), thus substantially reducing the volume of the necessary computational
operations.
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CHAPTER 3

SCATTERING AND ATTENUATION OF ELECTROMAGNETIC
WAVES BY AN ARBITRARY SET OF NONCONCENTRICALLY

LAYERED SPHERICAL PARTICLES

§ 3.1. Set of Nonconcentrically Layered Spheres in a Dipole Radiator Field

Chapter 1 discussed the case of a single nonconcentrically layered particle. /121
Here, however, we assume that there is a certain number of such particles,
arbitrarily located relative to one another. This problem is a direct extension
of the problems of Chapters 1 and 2 and was discussed by the author in [58].
Let us consider the statement of the problem. Let v spheres with centers 0sl

and radii bsl (s = i, 2, ... , v) be arbitrarily located (Figure 3.1) in infinite

space, in medium 0. In turn, inside the s-th sphere there is a set of (vs - 1)

spheres arbitrarily located inside one another with centers 0 and radii b
sp sp

(p = 2, 3, S..., v ).

We will call medium sp the interior of the sphere of radius bsp , excluding

the region occupied by the sphere of radius bs . We will assume that medium
sp+1

sp has complex dielectric and magnetic permeabilities Esp and vsp respectively,
and medium 0 has cOi' O'

We will also assume that at some point 0 of medium 0 there is an electric
dipole of moment p, arbitrarily oriented in space (see also the references on
p. 6). 'The problem is to find the electromagnetic fields in each of the media.

We introduce the following systems of Cartesian coordinates

System X 0 YZ 0 . Axiz ZO and X0 are drawn through point 0, respectively,
perpendicular and parallel to vector p through an arbitrary point O0 on axis

ZO, and axis YO is drawn perpendicular to axes X0, Z0 so that the coordinate

system XY 0 Z0 is a.right-handed one.

Systems XslYslZsl (s = 1, 2, ..., v) are obtained by a parallel shift of

system XOY0Z0 into origins 01s.
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Systems X' Y' Z' (s i, 2, ... , v; p = 2, 3, ... , - i). Axis Z is
sp sp sp s

drawn along the straight line Osp0sp+l; axis Xsp, 
along the line of intersection

of the plane perpendicular to axis Z' at point 01 with plane Z 0spspZ' and is /12:

directed toward the side from which the observer sees the rotation 
superimposing

axis Z on axis Z' through an angle smaller than r and taking place counter-
sp sp

clockwise. If point Osp+1 lies on the straight line Osp-10sp then axes Xsp Y Z'sp sp sp

will be directed along axes Xsp , Ysp' Zsp' respectively.

0 n
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/123
Systems XspYspZsp (s = 1, 2, ... , v; p = 2, 3, ... , vs - 1) are obtained

by shifting system X' pY' spl parallel to itself by a distance h along the

positive semiaxis Z'
sp-l1

Systems X Y Z (s = 1i, 2, ... , v). Axis Z will be drawn along straightS s s S
line OslO, axis Xs, in plane Zsl slYsl perpendicular to axis Zs and will be

directed toward the side from which the observer sees the rotation superimposing
axis Zs1 on axis Zs through an angle smaller than 7, taking place counterclock-

wise.

We will specify the position of coordinate systems X' Y' Z' and X Y Z
sp-sp sp s ss

with the aid of Euler angles: Xsp --the angle made by axis X' with axis X
sp sp sp

sp --the angle made by axis Z' with Z ; Xs--the angle made by axis X withsp sp sp s s
axis Xsl ; 8s--the angle between axes Zs and Zsl (0 < Xs, Xsp < 2r, 0 < sp,

Into each of the systems constructed, we introduce the spherical coordinates
X Y Z - r , , ; X Y Z - r X' Y' Z' - r , e' Osp + 1.s s s s s sp sp sp sp sp sp sp'

By rsj , sjsj are denoted the spherical coordinates of the origin 0jl in
Ss (s)the system with origin Os1 , and by h , the distance sl0; the angle between

vector p and axis Zs is denoted by p(s); the spheres with center Osl (s = 1, 2,

... , v) are numbered in the order of nondecreasing Ors. Relating to media

sp (s = 1, 2, ..., v; p = 2, 3, ..., vs - 1) and 0 the generalized scale of

potentials Tsp and TO, respectively, by analogy with relations (1.5), (1.8), we

formulate the problem at hand as follows:

T + ksp ro, s 1, 2, ... v; p =1, 2, vs,

qsp'Tsp - qsp 41 Tsp+I
d (rsp 1 T) sp+ t(s,+1 ) sp bsp+ I ,

dr OrOrsp 1 sp1

s=1, 2, ... , v; p 1, 2 ... -

ATosP k T,,s= 0,
o 0 To = q,s Ts

o (r,ITo) __ (rsTsI) for rt 'bs, , s= 1, 2, .... v,
Ors Or,

To ik0 T0 = I
Os, r1 (3.1)
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where 'k2 =-a ,pp,; sp=--i8sp; sp=--iLp~p, O is the angular frequency: qap={(asp, /12-

sp), s=l, 2, ... , v; P=1, 2, ..., vs; qo= (M, o}; ao= P-i8o = ~=--ito. [The braces have

the same meaning as in expression (1.7)].

TO = T00 + T0 s  (3.2)

T is the generalized scale of potential of the primary field given in the

coordinate system X 0 YZ 0 with the aid of expressions (2.10)-(2.13), or in the

coordinate system XjYjZj
w 1

Too= Do, j. (kor) P (cos)e,3)
n=Om=- 

(3.3)

D(0) is determined by formulas (2.17)-(2.19), (2.14); T0s is the generalized
nmO

scale of potential of the secondary field in medium 0.

We will seek the solution of problem (3.1) in the form:

T= I A's,) j,, (kr)P(cos Oj) e"m  +
n=O m=-n

+ B(,sQ,. (krf,j+1) P' (cos ,j+,) emPsJ+1,

s= 1, 2, ... , v; j= , 2, ....

T n 
(3.4)

Os N Y Bh h. (korst) P (cos0st) em's1,
s=I n=Om=-n

under the assumption that
Bar _)==0, s==1l, 2, ... , V.

(3.5)

Making expression (3.4) satisfy the boundary conditions in (3.1), having

first used the addition theorems of § 2.2 and considering the orthogonality of

the Tesseral functions, after the substitution

A (Sl) 7(s 2j--1) I//(n- m)! *

nA =Z-.m V (n+m)! h, (k lbs), j==l, 2, ... , Vs;

(3.6)

Bs =-ZS 21  . (n-- m) In (klbs+l+l), j=O 0, 1,.... v,--1,

where the functions h*(z), j*(z) are given by expressions (1.91), and after

transformations, we arrive at the system:
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z7s) (z + ( z° 0fi .l)o (1 -i/) +
Z l a 2. ' n ''1 M o ' o nm 0 0 -

'o r

zjj 2)a.) 0 - 0
r=0 1=-

i=l r=0l=--r

Z l -(i(s2) _ ( 1))

I W-Sa( W am I , -
==O ==r-

-2i + z 2] 1)(( j+ 1)

O =01=- r

+ (s2 )(s2j)
=01=--r

s=1, 2 ... 'v; j=, 2, ... , vs-; n=O, 1, ... ; (3.7)

m= -n, ..., n,

where Z 2 s) = 0, s = 1, 2, ... , v by virtue of (3.5)

It was assumed that

tn(ksjbsj) O, n=0, 1, ... ; s=1, 2, ... , v; j=1, 2, ... v,. (3.8)

Here55

(s2j + 2) (n+m)!(--l)
lnm = 1(n -- m)!(: +1)1 X

4f qs+1hn(ks]+tbsi+tl) jr(ksj+lbs]+2) (-l
X .16n1 1ls + 1,

qs]hr (ksjbs]+1) In (ksibs]+1)
j==O, 1, ... , v - 2;

55By qs0, ks0 are meant q0, k, respectively.
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/12

c(s2j--2) / (n + m (-- 1)! X

t (kslt -+n) 4 (n1 ) m)l (.)4- -1!

' K (k b 1)js + k 1, 0, 1, ... -2;
S (k ,j+ ,bs]j ) h,, (ksj + Ibj+1 )

(s.y--1) (n -m)! (t -+1)!
aluam2j - (n- m) !(t -)-w

jn (ksijbs+ )h (ksibsji)
X . Km , j 1, 2,

h (ksbj + ) In (ksbsj + )

(S2j-1) (n )! (- )! Xl=nm (2]+1 (n - ! (C-

K(n-1 +m)!(n -1) 1P .
(n- m)!(n -)!

ins m (n - 1) (n --+) !

(n + m) (2p + 1) i"- X

n +p, -+27COS O sjjt 1X)< i j (kjh,j +) 7np

I-1)I (p + m) (2 1iP- X
p-pms -n ((p-n)! 1) i

X- sin j +1 (ksj1hsjL) P,;

6m is defined by expression (1.42); 'sj j+l is the spherical coordinate '.
fnp s3 +1 5)

of the origin Osj+l, and the prime of the summation signs means that the

summation extends only to those values of a that have the same parity as the
upper summation index; 6.is is the Kronecker symbol;

f(is) jin(kobsl) j(kobs,) 1 ( -- !)! (n + )! q is).,,inm o - - h, (kobs) *, (k bst) (c + ) ! (n- m)! "

(is) n (k 0bst) j' (kobs1) )! (n ± nz)! qj(is).

fInm 1  (ksb) h (ksb) ( + 1) ! (n - m) ! n
,,128k,
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/127
(sO) n (kobs) (n + m) I /127
nM h. (kobs) I bJ*(kob) (n- m) 1 =- D)b(-1

4 -) + s+b (kAs1) 1/ (n + in)! O)
s h (ksIbsl) hn (kslbs) (n-m)l DsbMn S

(2j) 4q 1 i (kj+lbsj±)hn (k j±bs+±1)

a$ (kSijbJ+ ) jn (k 1bs]+l) j(ks1bsl+, 1

as, 1 )h( b (3.8a)
n' (%+ + I,)h (ksj+,l S+,)0

j=O, 1, ... , vs-1.

For convenience of the discussion, we will represent system (3.7) in the
following form:

2v -- 1 2 s -1

ZT -inip) sk= ' n (3.9)
p=O 1=1 p=O C=O I= -

s = 1, 2, .. ; k. 0 1 ... , 2v-1; n = 0, 1, .. ;

where m = -n, ... , n;

a4-,k for s; p=k +2; k 0=O, 2, 4, ... , 2v,-2;
(k+l)

all.k for i=s; p=k +1; k=l1, 3, 5, ... , 2v--:1

a, inik for i=s; p=k-1; k=2, 4, ... , 2vs-2;

CI ffI,,,=k a,,- 2 for i=s; p= k-2; k= 3, 5, ... , 2v,- 1;

Jf s.0o(1 - 8,) for7 p=O; k=O; i= 1, 2, ... ,v;
JI'ntm(1 - 8) for p-O; k=1; i=1, 2, ... v;
0 in all remaining cases;S1p,?) for k 0;

s n) / for k 1;

0 for k> 1;

(( ka - . (3.10)
psk as p [k+(-I)] pk'

To substantiate the solvability of system (3.9) and find its solution by
analogy with § 1.3 we construct a Banach functional space T2 whose elements are /128

the infinite four-dimensional matrices Z=.{Z(s} n=O, 1, ... ; m=-n, ... , n; s= 1, 2,

... , v; k=0, 1,..., 2v s- 1, c Z(sh) O with Iml > n and the norm
/ k 2"- 1 2 -

r 2 a

s=1 k=O n=O m=-n
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In terms of space Z2, system (3.9) may be written by means of matrix opera-

tors W and T

(W + T)Z = (. (3.11)

Here a(n) and (ip) are respectively the kernels of operators W and T; 0 is
psk rZnmsk

the free term.

On the basis of estimates (2.35) and similar ones, it can be shown that

when

bs < h(s), s = 1, 2, ... , (3.12)

the following inequality holds:

n=O m=-n

s==1, 2, ... v; k== , 1, ... ,2 1,

from which it follows that the right side of equation (3,11) is an element of T2.

Relation (3.12) is equivalent to the condition that point 0, at which dipole

p is located, does not lie on any of the spheres.

As was done in 5 1.3, it is shown without any substantial modifications that:

1. W and T are linear operators defined in space T 2 and representing it

in their part.

2. W is a reversible operator and T is a completely continuous operator.

The complete continuity of operator T follows from the inequality

n =O ,n =--n - O I= --¢

which is fulfilled under the conditions:

bs, + bi < rl, s = 1, 2.....; j=1, 2 .

bs + h, 4 1 < bsj, s= 1, 2 ..... ; j 1, 2, . . * -1. (3.13)

Conditions (3.13) are adequate to the requirement that both the spheres

and their inner layers have no common points.

Thus, all the conditions of Nikol'skiy's theorem [36] have been met for /12

equation (3.11), and hence, Fredholmn's alternative applies.

We will show that the homogeneous equation

(W + T)Z = 0 (3.14)

has only a trivial solution.
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Let us assume the opposite, i.e., let in space 12 a Z not identically

equal to zero 56 exist such that

(W + T)Z = 0.

This means that for certain s = so, k = kO, (s0kO) * O, or in terms of relation

(3.6):

=(skO) + 0 or g(sO k O) *0 (3.15)
nm nm

System (3.14) corresponds to a homogeneous boundary value problem which in
the absence of a source and under the condition of radiation at infinity, and also
owing to the conjugation of the tangential components of the field and theorem
of uniqueness of the solution of the Maxwell homogeneous system in the multiply
connected region has only a zero solution.

From the above and from theorem 1 of § 1.3 it follows that s = sO and k = k0

TSo1 = 0, (3.16) 5 7

i.e., M e
Yi. e., X.A'j, (ksors,,) pi (cos 0 s,) e'm% ' +

n=0 m=-n

+ 7(sYh, (ks.1rso2) PT (cos Os2) elm's, 0. (3.17)

Applying addition theorem (1.70) to identity (3.17)

h. (kslr 2) Pm (cos Os2) emYs2z

p

= : -p 7 1,p (klrIsl) P (COS 0s) eisl
p=O0=-p

after some simple transformations we obtain
p

_,I j (k Ir,) h,,, (ksiri) B )Ki7-p)XsI 0. (3.18)
p=0 X -p

Just as relation (1.148) follows from identity (1.145), we have from (3.18) /130

(s o1 )- 0 or =(s01) - 0 (3.19)
nm nm

5 6The zero element of space Z2 is considered to be the matrix

5 7By Tsj is meant the solution of homogeneous problem (3.14) in region sj.
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By analogy with the reasoning used in proving theorem 2 of § 1.3, condition
(3.18) with k0 * 0 leads to the following:

(s 0 kO) = 0 or =(s 0 k 0 ) - 0 (3.19a)
nm nm

If kO = 0, instead of identity (3.16) it is better to proceed from the

identity Tos 0, or

B('°ih (kr 0 ) P,7 (cos 0 s,) eimysl 0,
s=I n =0 m = -n

which with an accuracy to the symbols is the same as (2.39). By virtue of
relation (2.42), it can be stated here as well that

B(SOO00 ) = 0 (3.20)
nm

Identities (3.19)-(3.20) are in contradiction with assumption (3.15). Hence,
we conclude that equation (3.14) has only a zero solution, and hence, system
(3.7) is uniquely solvable in space T2"

It can be shown that both series (3.4) and the series obtained from them
by differentiating a finite number of times with respect to the spherical
coordinates converge absolutely and uniformly. Thus, representations (3.4) in
terms of relation (1.2) realized the solution of the stated problem.

Let us now consider the case in which condition (3.8) is not fulfilled.
Let for certain n = n0, j =0 s = sO the following relation apply:

s(ksO,+ bssO+1) - 0. (3.21)

without decreasing the generality, we will assume that it is fulfilled when
j >l.

Then, rearranging the system which is the initial one for (3.7), after
transformations analogous to (1.152), we obtain

nX Z(iP"C(ip)* (sk,

42n psk Y (3.22)
p=O =1 p=O =O01=-(3.22)

s=l, 2, ..., v; k=0, 1 ...., 2 -1; n=0 , 1,...;

m=-n, ..., n;

where /17

(3.23)
132(I -- C(1 -- 8 ± +
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.~' ,f for i -s; p k +2; k= O, 2, 4,..... 2v, -2,
f1, In for i- s; p= k+ 1; k = 1, 3, 5, ... , 2v, -- 1,
'a,-I) for i=s; p=k-l 1; k=2, 4, .. , 2v,-2,

p) -(sk--2)m-[ ls= aZlar for it---s; p=k-- 2; k=3, 5, . . ., 2vs - 1,

f ,mo (1 -- i s) for p=O; k=O; i=l, 2, v;
f(,nmi ( - 8.,) for p= 0; k=1; i=1, 2 ..., v.

O in all the remaining cases

Op sk i -Onn 0pss 0 ) S - ps nno,

(P) = a.K)BP [k+(_)
] 
--japk

qsjh, (ksjbsl+1) in (kbi +1 )
sI; k =2jo+ 1,

- _ qsl+lJjn (ksj+lbsj+1) h* (ksjbsj) 1,
0 k= 2jo,

a.s in all the remaining cases.

i 1) (-l)!(n +m)! (bs (ksbbj+ )h (kjb,)

n2 -( + !(n-m), (ksb, +) iJ, (ks]bs)+ nm)

j= 1, 2, .. vs - 1,

j(s 2 J+) f ( -1)!(n + m)! n (ksj+!bsj+i) J*(ksj+ibs+ 2 ) (
tm2J V ( 0 + 1) (n-m) 1 C, (kjbs+ 1) j (kb .j++1

j=O0, 1 .... S-2,

(s2+2) - f ('r-)!(n+m)! hn(ks+lbs+i)] (ks]+ibs+ 2 )

m + 1 (r + 1) ! (n - m) * j,n (ks+ 1 b s] +1) hn (ksibsi)

X Kg- + 1 ,)

j= 0, 1, . . ., v, - 2,

(s2j-1) ( ,t--1) ! (n + hnm)! qjsf, (ksjbsj+ l)h (ksjbs)

Un2j+ .(T +1)! (n - m)! qs+lt (ks+ ibs+l ) h, (ksjbsl) . (3.24)

j= 1, 2, .. .., - 1.

If by analogy with system (3.7), system (3.22) is written in the form of a /132
single operator equation

(W, + T)Z=
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where W, is an operator with kernel a(n )* and T, is an operator with kernel
psk

C(ip) *  it can be shown, just as was done in the general case, that W, is a
TLnmsk'
reversible operator and T, is a completely continuous operator in space 12

We will note at this point58 that if the parameters of the media are such
that equality (3.21) is fulfilled when j = j0 and for several n and j, i.e.,

when n = n and s = sq' q = 0, 1, ... , p, then the following formula should be

used instead of formula (3.23):

(ip)* (iP) 8 ,lnm 6
tlnmsk = lnmsk 1- f! SSq +ClPnnSk 1 (3.25)q=o q=o (3.2S)

All the remaining relations of (3.24) will remain unchanged.

The components of the electromagnetic field in medium 0 will be determined
by the same formulas as in § 2.3 if B( , B(s) are replaced by B ,,, , Bm,(vO

In medium sj (s = 1, 2, ... , v; j =. i1, 2, ... , v~) if A(u), A ) B (u)

B(j)  are replaced by A(sj)  A(s) B(s) B(sj) respectively.
nm(v) nm(u)' nm(v)' nm(u)' nm(v)'

The scattered field in the long-range zone of medium 0 is then described by
the same relations (2.51) as in the case of homogeneous spheres if Si( 0' ~0)

i = 2, 3, 4, 5 stands for

S2(00 , cfo) = ,, B3n (,)FW, 3,n(Oo, ),
s= n=O trn=-n

n

S 3  = (0 TO i) W?,-n (2) , fo)'
14  o) = B " N' Bs) t t,, ),s=11n=O rn) =-n

SI n =0 m = --

S5 o  V (so) U(,;-,W (1 ), (3 25a)

S ==:l z0 171- -- a

The transverse character of the field in the long-range zone approximation,
resulting from expressions (2.55), also applies to the case of an arbitrary set
of nonconcentrically layered spheres.

58 In the course of the construction of the system it was also assumed that condi-
tion (1.162) applies, which also holds in the case at hand by virtue of assump-
tion (3.21).
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§ 3.2. Set of Nonconcentrically Layered Spheres in the Field of a Plane Wave /133

We will be moving dipole p (Figure 3.1) along axis ZO while perserving its

orientation. As a result, we will obtain a plane wave (2.56) propagating along
the negative axis ZO, whose electric vector is polarized along axis X0.

Essentially following the reasoning given in Chapters 1 and 2, we will
obtain the components of the electromagnetic field in each of the media considered:

in medium 0, if the coefficients B(s) B(s) from § 2.3 are replaced by
nm(u)' nm(v)

E B m(u)' EBnm(sv); in medium sj, if the coefficients A , BJ)1 nm(u) nm(v) nm(u), nm(v)' nm(v)'
B )  from 1.3 are replaced by E A(s) E (sj) , E E(sj) E Z(sj)
nm(v) 1 nm(u)' 1 nm(v) 1 nm(u)' 1 nm(v)"

At the same time, we will assume that
A (Sj) ._ (s2j + 1) (n - m)!

"i .1-- Y (n + m)! h. (kbj), 1, 2,..

nm m -(n + m)l (ksjbsj++l)(
(3.26a)

and ~(sp) satisfies the infinite algebraic systemnm

2vs -1 2 s -1 
Z(sp) - (s) (3.26)

p0O i=1 p=O C=01=-.

=O, 1, . . .; m -n, . . ., n; s== 1, 2, ... , v;
k==0 O, .... 2vs - 1,

where
nmwhere j (kobsl)  (n + m)! exp (-ikoro cos Oo ,h. (kobOj) J, (kob ,) (n - m) i o

. sl_ - (k(bI) I n +m )!

Snh(k1b) exp (-ikoroi cbs,) (,.
~(k (0k,) h(k,,b ,

=(sk)= 0 when k > 1, A is found from formula (1.187).nm nm

System (3.26), which applies in the case of a plane wave under condition
(3.8), differs from system (3.9) only in the free term. It is easy to show that

< l mIoo, (3.27)
n=0 m -n

s=1, 2, .... , v; k= 0, 1 ..... 2v,-1.
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By virtue of the same arguments as those used in proving the unique

solvability in space 12 of system (3.9), inequality (3.27) leads to an analogous

statement for sytem (3.26). The validation of the solution performed in 5 3.1

is also applied here without any modifications.

The components of the scattered field in the long-range zone of medium 0 have

the form (2.66), where

s n=0mms 0n

S (.0n i 0)- m --t =

v CO n

S3(01, O) B flrn (vI WZns( 0, 'r)'
s=1 n=0m=-n

v n
S4 (0), ?) - N. V,(s0) ,)in ) (0

S=I n= O m=-n

S -'W nin (v,)i Wnns (00, TO).
.s1 n=Om=-n

However, if condition (3.8) is not fulfilled, then the following system

must be used for determining the unknown coefficients:
2vs-1 V 2vs-1I(sp)_(n)* + .(I)Cp)C (3.27a)

p=O i=1 p=O =Ol0=-.

n= O, , .. .; m =-n, ..... n; s = 1, 2 . v;

k- O, 1, ..., 2v -- 1,

where psk(n)* C nmsk are given by relations (3.23), or (3.25) and (3.24).
psk' -cZnmsk

§ 3.3. Electromagnetic and Radar Characteristics

The derivation of the electromagnetic and radar characteristics coincides
in this case with the analogous conclusion discussed in § 2.5. and will therefore

be omitted. We will give only the final expressions. The terminology and

symbols used in § 1.5 will be kept.

The intensity I( 0, 9_ of the scattered electromagnetic field of medium 0

in the long-range zone is: 2 n

b ;. , , ) W 3 ,- 1)12-- n , (v] ,, 0 i 1 m n o2n;

/13!
The scattering diagram F(O0, 0) is:

F (o, o) = (koro) I (0o, o);
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The differential two-position scattering cross-section a (80, 0) is:

a (6o, T) = 4,crI (0o, To);

The effective backscattering area a' is:

Si-ne-kOsC°os X
0 1=1 s=1 n=m=-1

(sO) () - (so) P-1) 2,
X Dn (OVns--xonm () Vnms 12

where V is defined by formulas (2.75);
nms

The effective attenuation area a'2 is:2 2

2-- (--Re) f e"o' coss.,(2n+ 1)(,)m + )
s=1n=O m=-n

The effective radar scattering area '0 is:0

00 - - = e-kR'0os60s%(-1)"(2n + i) ( -
-- s=1l Om=-1

where

2i"- signm (n + m)! n (n + 1) so)

(2n+ 1) nO(u) npH m O,

2i"-1 9o 11(n + m)!n(n+ 1) (so) for
%(2) J (2n ) k5 (n - m)! nm (v) or = +1,

4i0" 1 Os siln Bossin os (s)
ko (2n + 1) no(v) for m=0;

The two-position scattering cross-section a' (00 , 0) is:

' (60, 0) - 4- S, (0, o) cos 0 cos To - S8 (60, o) sin y o

the scattering indicatrix y(0, 00) is:

1 0 (o, Tcp)= -j F( 0, c O);

The effective area of total scattering a'1 is: /136

1
ko

where 2 2 v co n

0 1=10 0 s=ln=Om=-n

ixo0), (IW-1) (0 ,0 T)
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§ 3.4 Scattering and Attenuation of Electromagnetic Waves by an Arbitrary Set

Of' Ideally Conducting Spheres with a Nonconcentrically Layered Covering

The case discussed in the present section (all the spheres of radius

b , s = 1, 2, ... , v are ideally conducting) results from the general solution
sy s

constructed in 5 3.1-3.3 for nonconcentrically layered dielectric spheres for

k2  = i , s = , 2, ... , v. However, the difficulties involved in substantiatingsv = I
s

the limiting conversion oblige us to select a simpler method of direct solution.

We will formulate the problem in terms of the coordinates and symbols intro-

duced in the preceding paragraphs of this chapter.

ATsP+ kp sp = O, s=1, 2, ... , v; p=1, 2, ... , V,,

qsp sp qsp+ + Tsp t1 )for rsp+ 1 = bsp ,
a (rsp ITsp) . (rsp+p+I p+) s 1, 2, . . ., v;

orsp+I - drsp1 p= 1, 2, ., vs - 2;

O (rsvs - ) Tss 0
O s01 4r, S

for rs, =bsv, s =1, 2, ., ;

AT -k =k 0,

q9TO _ s f sor r -bs, (3.28)
ia(rsTo) . (rsjTs j) = 1, 2 ...

OT0
rQ ik7'=o ,

where a01', 01 are defined by expressions (1.290).

The solution of the problem is sought for s = 1, 2, ... , v; j = 1, 2, ... , /13

v - 1 in the form (3.4). Making the latter satisfy the boundary conditions

(3.28), after transformations and substitution (3.6) we arrive at the system

i=ls=O (-----

=1 -t=0=

S ln - nm, (3.29)

r=01=-r
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( s ,2j) (2j)Z(s29+ )(s 2j- 1) (s j-- 1)
Zjnm n I +ns Zl f ; A 1 L~xl uxlnminj +

2 +) V s
ANNO lAT--

S=0 =- =-m , N 2. -. a,,,,j

Z 2j4-2)a(s 2j+ 2)

T=Ol---T

(s ))__ ' Z(S 2 , - 3),,-( 2_ - 3,

Larn - d s. rlTnm 2vs--2'r=ot=-T (3.29)
n=-O, 1, .. ; m=- -n ...... n; j 1, 2 ..... v-2;

s= 1, 2, . . ., v.

Here a ( k )  (sk) a ( s i )  are defined by formulas (3.8a)
ns nm ' clUnmk

,(s2s -3) - - (n m)!(- )!

Sin 2',s- 2 - (n-m)!( l)!

I, (k's - ibss) h: (k s _ -b,,s -) (3.30)

X (1, c ( Knmris .S- 1,
Q ks(-jbsvs)* (k ,s-ibss

rn(z), Gn(z) are found from formulas (2.89).

In the course of the transformations it was assumed that

(kb sj) 0, n =O , 1, .. .; s= 1, 2,..... v; (3.31)

j= 1, 2 ., v-.

If by analogy with the general case (p. 128) we introduce into consideration the /138

linear Banach space T'2, consisting of four-dimensional matrices

with Imi > n and the norm

v 2vs - 2
s= k=0 n= O tn=--n

system (3.29) may be written in the form of a single operator in equation

(W + T)Z = e (3.32)
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As in the general case, it can be shown that under conditions (3.12), (3.13)

@(-' 2 , and W and T are linear operators acting from Z'2 into ' 2' W being

reversible, and T completely continuous in T' Hence, Fredholm's alternative

is applicable to equation (3.32).

Proof of the existence in the homogeneous system

(W + T)Z = 0

of a trivial solution only is carried out according to a general scheme by
contradiction on the basis of the uniqueness theorem for Maxwell equations in
the multiply connected region and the addition theorem of § 2.2.

Thus, system (3.29) is uniquely solvable in T'2' and representation (3.4)

when s = 1, 2, ..., v; j = 1, 2, ..., v - 1 in terms of relation (1.2) realizes

the solution of the problem on the scattering of the electromagnetic waves of
a dipole radiator by ideally conducting spheres with a nonconcentrically layered
covering.

In the case where for certain j = j0 and n = nq, s = sq, q = 0, 1, ... , p,

inequality (3.31) is not fulfillable, system (3.29) must be replaced by the
following system:

2.)-3 2vs-3

L n, psk -- ± ' W -n s ) (3.33)

p=O 1I=1 p=0 01=--'

Znm Zj Im m 2 -2.

s = 1, 2, .... v; k= O, 1, ... , 2v- 3; n = , 1 .
m= -n, ... , n.

where C (ip ) * is given by relation (3.25), and all the remaining ones, by
T cnmsk

expression (3.24), (3.30).

System (3.33) is also uniquely solvable in '2

The components of the electromagnetic field in medium 0 will be determined

by the corresponding formulas from § 2.3 if in these formulas B( s ) is replaced
nm

(sO)by BnO ; in medium sj (s = 1, 2, ... , v; j = 1, 2, ... , v - 1) by replacing

A(  and BW from § 1.3 by A( s ) and B (sj) The scattered field in the long-range
nm nm nm nm
zone of medium 0 is described by'expressions (2.41), and Si ( 0 ,' 0) , i = 2, 3,

4, 5, by relations (3.25a).
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In the case where the primary field is the field of a plane wave (2.56),
systems (3.29) and (3.33) become (3.34) and (3.35), respectively:

2v s-3 , 2vs- 3 ,

nnm psk "-l-u

p=O i=l p:;O '=01=--t

2 (s2,j- 2) " 3)2 (- 3) _( - 3)2, (3.34)

nm zl Wtnm 2v, -2 (
=0 l=--

n=O, 1, ... ; m----n, ... , n; s=l, 2, ..., v;

k=O0, 1, ..., 2vs--3.

2, $-3 1 2v,- 3 .0 t

the coefficients related to B(s) by relations (3.26a) satisfy (3.3)4) or

nm n - 2

n(3.35, ), but not-n ...longer n;(3.26) or (3.27a).

k - 0, 1, .... 2"q -- 3.

The electromagnetic and radar characteristics of an arbitrary set of ideally
conducting spheres with a nonconcentrically layered covering will be determined by

analogous expressions from § 3.3, obviously with the only difference that here

the coefficients i(sO) related to 0s) by relations (3.26a) satisfy (3.34) or
•nm nm

(3.35), but not longer (3.26) or (3.27).

The above enumerated aspects of the numerical realization of the solution of

the problem discussed in the present chapter do not differ essentially from the

corresponding aspects presented in 5 1.8, and are therefore omitted.
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PART II
CHAPTER 4

DIELECTRIC CONSTANTS OF HYDROMETEORS

§ 4.1. Dielectric Constant of Water

The electromagnetic properties of matter are characterized by three para-
meters: electrical conductivity y, absolute dielectric constant E, and absolute
permeability p. The electrical conductivity of free space (vacuum) is equal to
zero, and the absolute dielectric constant and permeability are:

s =s(O))= 8,854 10 - 12 F/m,

() -)1,257 . 10-6 G/m. (4.1)

As we know, by using these values one can write the absolute electromagnetic
parameters E and - of an arbitrary medium by using dimensionless complex relative
,dielectric constant c and permeability p:

es (S; - t(°)' (4.2)

where ,--i -- is"
(0) (4.3)

In paramagnetic and diamagnetic substances such as water, ice, and snow,
the magnetic properties are usually weakly expressed: for them as for a vacuum,
one can assume that p = 1. The parameters e' and E", however, are, generally

speaking, functions of temperature and frequency.

In studying the dielectric properties of a substance, they are usually
divided into polar and nonpolar properties depending on whether the molecules
have a constant dipole moment or not. The most common examples of a polar
substance are water and ideal aqueous solutions.

In a study of the dielectric properties of polar media, P. Debye [59, 60]
obtained the following relation for c of a substance for alternating fields by
assuming the existence of a single relaxation time:

E -- 1 (4.4)
S-j-2 3Vo) - 3. kT 1 i~,o '

where N is the number of molecules per unit volume, a is the polarizability of
the molecule, p is the dipole moment of the molecule, k is Boltzmann's constant,

142



T is the absolute temperature, T0 is the relaxation time of the molecule, and

w is the cyclic frequency.

Debye treated the molecules of a liquid as spheres of radius a having con-

stant dipole moments and rotating under the influence of an electric field in
a medium of viscosity n. In this assumption, t0 is defined in terms of the

friction coefficient with the aid of Stokes' law:5s

0_ ,4xua3:q (4.5).
o- 2kT kT

It follows 6 0 from equations (4.4), (4.5) that the values of the complex dielectric

constant of water depend on the frequency and temperature. At low frequencies

(w -+ 0), e is a real number, called the static relative dielectric constant, and
is denoted by Es. Hence,

s+ 2 = 3 J 3 r • (4.6)

At high frequencies (w + c), E is also real and is called the optical dielectric

constant EO. From relation (4.4) we have:

o--I _N a. (4.7)
so+ 2 3(0)

From equations (4.4)-(4.7) it is easy to obtain an expression for E in terms

of ES' O:
o $+ S- , - 60

Si so +2 )

or
as- 0

=s- - (4.8)

where - is the relaxation time of the dielectric. constant, /142

+2 EoS 2  e (4.9)
so+ 2 0 eo+2 2kT

The temperature dependence of E now enters into relation (4.8) via relations

(4.6), (4.7), (4.9).

R. Cole [61] using the results of studies by L. Onsager [62] and Van Vleck

[63], found that the experimental values of E are in better agreement with the

theoretical values if one assumes that the relaxation time of the dielectric

59n is measured in poises, and a in meters.

6 0When f = - 1013 Hz, a = const.
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constant in relation (4.8) is not described by expression (4.9), but by the
formula

I--'
(4.10)

where Np 2  2) (1
27s0o) kT

Here q is determined from the relation

as -1 so- I Np2

s + 2 0o + 2 960O)kT
(4.11)

Np2 3s ('s ( + 2) ]

S96(O
0
)kT t (2es + so) (as + 2)

and hence, is temperature dependent.

Formulas for the real and imaginary parts of e result from expressions (4.8)
and (4.3):

s - s0
S' = SO + I4+(W,)2 ' (4.12)
,, (as - to) 0)C

1+ (m)2 '

as does the formula for the complex refractive index

N = 1/E= n - ix, (4.13)

where
S+ V( )+ (2+")2

t= 2

-E' + V(') 2 + (sE)2 (4.14)
x= 2

In expressions (4.14), n is the refractive index, and K is the absorption
index of the substance.

In practice, instead of w and r, use is frequently made of wavelengths /14:

X and As, corresponding respectively to frequencies w and i.e.,
st

X== , --= 2c, (4.15)

where c is the speed of light in vacuum.

When relations (4.15) are considered, formulas (4.12) take the form:

+ A) (4.16)
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(as - eo) -

S+ (4.16)

The start of extensive experimental and theoretical studies of the dielectric
properties of water at X < 20 cm apparently dates back to the 1950s.

A detailed bibliography of this work, contained mainly in papers and reports
at conferences held during 1940-1945 is given in [64]. Since most of them were
later published in scientific journals, we will not dwell on them here. Let us
note only the papers of R. Hippel [65] and N. Dorsey [66], which gave experi-
mental values of n and K for wavelengths of 9.72 and 10 cm (Table 4.1) and 1.25
cm (Table 4.2).

TABLE 4.1. EXPERIMENTAL VALUES TABLE 4.2. EXPERIMENTAL VALUES
OF n AND K OF WATER AT X = 9.72 OF DIELECTRIC CONSTANTS OF WATER
CM AND X = 10 CM AFTER [65]. AT X = 1.25 CM AFTER [66].

-= 9.72 Cm X= 10cm
tsC i 1C n x I ' "

3 1 - 27 27
0 8.95 1,33 - 25  6, 84  2,63 35 23

10 9,00 1,10 - -
20 8,88 0,90 8,84 0.66
30 8,73 0.73 8,69 0,54
40 8,60 0,60 8,56 0,40 Note: Commas indicate decimal

points.

Note: Commas indicate decimal points.

In 1946, J. Saxton and J. Lane published in [67] the results of measure-
ment of the complex refractive index (4.13) of water at wavelengths of 1,24
and 1.58 cm as a function of temperature (Table 4.3). In [68], Saxton studied
their agreement with theoretical values by using Debye's theoretical model (4.12)
with relaxation time of the dielectric constant, defined by both expression
(4.9) and (4.10), (4.11). As a result, values of all thb parameters entering /144
into equalities (4.9)-(4.12) were found (Table 4.4). Moreover, it was assumed
in relation (4.11) that cs 0 E, which immediately leads to the estimate

3s, 3

2as + o 2

which always holds for the parameters of water. When this is taken into account,
expression (4.11) takes the form

s s--1 E - 1 1.45 (oi + 2) (4.17)

where S2 o+2 Es+2 1
where

Np2 1180

9s°)kT T
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TABLE 4.3. EXPERIMENTAL VALUES OF DIELEC, The paper [68] also indicates

TRIC CONSTANTS OF WATER AT X = 1.24 CM AND that the constant (1.45) taken in

S= 1.58 CM AFTER [67] (4.17) (instead of :) better satis-

Xfies the experimental data, and
x=1,24 m x=,sem that its variations with tempera- /145

ture at 0 < t < 400 C do not
Sexceed 0.003.

0 4,68 2,73 14,4 25,5 5,24 2,90 19,0 30,4
5 5,24 2,89 19,1 30,3 5,84 2,97 25,3 34,7 On the basis of the parameter

10 5,74 2,92 24,4 33,5, 6,36 2,91 32,0 37,1 values listed in Table 4.4, Saxton15 6,17 2,88 29,8 35,5 6,77 2,78 38,1 37,6
20 6,53 2,77 34,9 36,2 7,13 2,61 44,0 37,2 calculated the refractive and ab-
25 6,84 2,63 35,0 23,0 7,40 2,41 49,0 35,7 sorption indices n and K for water30 7,10 2,48 44,2 35,2 7,59 2,21 52,7 33,5
35 7,30 2,30 48,0 33,6 7,72 2,01 55.5 31,0 at X = 10.0, 3.2, 1.24, and 1.58 cm,
40 7,47 2,11 - - 7,81 1,80 37,7 28,1 and found them to be in satisfac-

tory agreement with the experimen-
tal data reported in the literature.
Theoretical curves of n and < as

TABLE 4.4. VALUES OF THE PARAMETERS
OF EXPRESSIONS (4.19)-(4.12) AFTER [68] 0.5 c m and as functions of wave -= 0.5 cm and as functions of wave-

length for X > 0.2 cm at t = 200C
c , -10to1c ,.o 10c Es were also plotted in [68].

0 1,045 19,05 28,3 88,0 5,5 Table 4.5 lists the results
5 1,047 14,6 21,9 86,0 5,5 of these calculations, presented10 1,049 11,85 17,8 84,0 5,5
15 1,051 9,6 14,6 82,0 5.5 in the form of numbers in [64].
20 1,053 8,1 12,35 80,0 5,5
25 1,055 6,8 , 10,5 78,2 5,5
30 1,058 5,95 9,2 76,4. 5,5 In [69], taking the measure-
35 1,061 5,2 8,15 74,7 5,5 ments of [67] into consideration
40 1,064 4,55 7,3 73,0 5,5 and utilizing the fundamental sim-

ilarity between the mechanisms of

TABLE 4.5. VALUES OF DIELECTRIC CON- dipole rotation and motion of par-
STANTS OF WATER CALCULATED [68 64ticles in a viscous liquid, Saxton

obtained theoretical values of the
FROM THE PARAMETERS OF TABLE 4.4

parameters E)0, t and T1.(Table 4.6)

and experimental values of the re- /147
A=-05 cm .=3a.2 cm fractive index of water in the upper

S, , , , portion of the millimeter range was
also made in [69].

0 3.18 1,76 7,01 11,2 7,10 2,89 42,0 41,1
5 3.50 2,03 8,13 14,2 7,63 2,62 51,3 40,0 As is evident from Figure 4.1,

10 3,80 2,25 9,38 17,1 8,00 2,33 58,6 37,3 the agreement is completely sat-15 4,10 2,41 11,0 19,7 8,22 2,00 63,6 32,9
20 4,39 2,54 12,8 22,3 8,33 1,72 66,4 28,7 isfactory. Extensive calculations
25 4,67 2,62 14,9 24,4 8,38 1,50 68,0 25,1 (Table'4.7) of the dielectric
30 4,94 2,67 17,3 26,4 8,39 1,31 68,7 22,0 constants of water with consider-
35 5,21 2,69 19,9 28,0 8,38 1,16 68,9 19,4 constants of water with consider-
40 5,47 2,69 22,7 29,4 8,35 1,02 68,7 17,0 ation of the values of the para-

meters given in Table 4.6 were
made in [70]. The close

Note: In tables above, commas indicate
decimal points.
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agreement between the values of Tables 4,7 and 4.5 confirms the correct choice
of the theoretical model in [69].

In 1947, K. Lindman [71] pub-
TABLE 4.6. VALUES OF THE PARAMETERS OF lished a detailed survey of studies,

EXPRESSIONS. (4.9)-(4.12) AFTER [69]. started in 1880, dealing with
measurements of the refractive
index n, and also the results of his

c s .01012 C' o ,. ~ 1012 C own experiments at wavelengths of
0.015-10.4 cm (Table 4.8). As he

0 88,0 4,5 21,0 23,1 -0,10 noted, these values are in good
5 86,0 5,0 15,1 - -0,28
10 84,0 5,5 11,6 15,9 -0,37 agreement with the results of a
15 82,0 5,5 8,9 - -0,44 large number of other studies.
20 80,0 5,4 7,7 11,4 -0,48
30 76.4 5,3 5,85 8,5 -0,45
40 73;(0 5,2 4,68 6,6 --0,41

Note: Commas indicate decimal points.

TABLE 4.7. VALUES OF DIELECTRIC CONSTANTS OF WATER CALCULATED [70] /146
FROM THE PARAMETERS OF TABLE 4.6.

t=0*C t=to C t=18* C =20'C t=300C - t=40' C

_' " _ s' ( . . ' i I' * s ' a '

O, - - - - 5,75 4,87 - - - - -
30 0,2 4.72 4,21 6,15 7,13 - - 6,82 10,02 7,58 12.56 8,51 14,62

0,3 - - - - 8,18 14,13 - -
0,4 5.34 8,35 8,06 14,00 - - 10,75 19,25 13,61 22,84 16,72 25,50
0,5 - - - - 12,60 22,12 - - - - - -
0,6 6.37 12,38 11,04 20,18 - - 16,43 26,50 21:59 29,80 26,58 31,45
0,75 - - - - 19,85 29,65 - - - - - -
0,8 7,78 16,22 14,82 25,48 - - 23,05 31,78 29,90 33.82 35,70 33.70

35 1,0 9.50 19,80 19,18 29,83 27,75 34,41 29,75 35,00 37,50 35,42 43,30 33.61
1,2 11.52 23,20 23,78 33,24 - - 36,00 36,70 44,01 35,48 49,15 32.35
1,4 13.65 26,09 28,45 35,80 - 41,70 37,26 49,30 34,55 53,70 30,60
1,6 16,02 29,00 33,00 37,56 - - 46,65 37,18 53,58 33,10 57,20 28,71
1,8 18.81 31,47 37,44 38,68 - - 50,92 3650 57, 10 31,62 59,80 26,82
2,0 21,50 33,68 41,58 39,40 - - 54,50 35,42 59,88 30,04 61,90 25,05
2,5 28.30 37,69 50.20 39.10 61,65 32,28 64.,8 26,20 65.45 21,41

40 ,0 34.99 40,22 57,08 37.0 65,05 30,64 66,10 29,18 68,01 22,98 67,60 18,37
3,5 41,08 41,47 62.50 35,50 69,40 26,38 70,10 20,35 68.98 16,13
4,0 46,68 41,70 66,30 33,25 - 71.65 23,82 71,30 18,14 69,88 14.32
5,0 55,82 40.65 71,70 28,95 74.76 21,22 74,20 19.80 73,32 14,97 70,72 11 .58
6,0 62.66 38,42 75,05 25,38 -- - 76,00 16,95 74,01 12.68 71,40 9.74
7,5 - - - 77,76 14.87
8,0 71,55 33,25 78.95 20,04 - - 77,62 13,00 75,28 9,62 72,18 7,40

45 10,0 76.70 28,60 80,90 16,47 79,05 11,35 78,10 10.47 75,50 7,72 72,46 5,94
15,0 82,52 20,62 82,60 11,22 - - 79,61 7,02 76,13 5,15 72.77 3,99
20,0 - 84.95 15,92 83,47 8,49 - 79.92 5,35 76,26 3,91 72,87 2,98

Note: Commas indicate decimal points.
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XIn 1948, C. Collie, J. Hasted, and D. Rit-

3.0 son [72] performed a careful experiment at 3
wavelengths of the centimeter range in the
0-750 C temperature range. The values of n and
K were measured within ± 1% for each frequency

2.5 at 100C temperature intervals with an accuracy
of ± 0.40 C. The measurements also showed that
E = 5.5 (±1), and the temperature dependences

2 of X and c were obtained (Table 4.9).
2.0 I s s

0 10 20 30t~V The experiment of [72] was repeated with

even greater accuracy by M. Buchanan [73] at
Figure 4.1. Theoretical (1) wavelengths of 1.26 and 3.2 cm and temperatures
and Experiment (2) Values of from 0-600 C. The n and K values of water that
K at X= 8.9 mm and t = 200C he obtained differ from the n and K listed in
After (691. Table 4.9 by no more than 1%. As is evidenced

by the curves plotted in [73], Buchanan's
experimental data are in even better agreement with the Debye relations at e0 =

5.5 than those of Collie, Hasted and Ritson.

TABLE 4.8. EXPERIMENTAL DEPENDENCE OF THE REFRACTIVE INDEX n ON X AT
t = 170C AFTER [71].

A cm . . . 10,4 4,6 2,5 1,5 0,66 - 0,24 0,10 0,05 0.014

n..... 9,0 8,77 8,41 7,84 6,02 3,63 2,62 2.22 2,15

On the basis of analysis of a large number of experimental values of diel-
ectric.constants of water at t = 200 C (Table 4.10), M. Magat.came to the

conclusion 61 that Debye's relations (4.16) satisfactorily describe E of water and

in the submillimeter range at the values of Es' , , Xs given in Table 4.11. As

will be shown below 62 at 0 = 4.1, the errors of the calculated values of n are

of the order 3-5%, and those of K, of the order 40-60% in comparison with the

experimental values (Table 4.10).

In [79], using the parameter values from Table 4.4, Saxton continued his /14
calculation of the dielectric constanft of water at t = 200C by carrying it into
the submillimeter region up to X = 300 pm. However, the data thus obtained are
not at all in agreement with-the experimental values given in Tables 4.8 and
4.10.

In 1950, D. Kiely [80] published his measurements at 8.7 mm wavelengths at
t = 11.1 0 C; n = 4.40 + 0.24; K = 2.91 + 0.06.

Let us note that the value of K given here is in good agreement with the
value obtained by Saxton [69] at A = 8.9 mm.

61Measurements at X equal to 313 and 109 Pm were made by H; Rubens t75), and the
remaining ones at A < 313 pm, by C. Cartwright [76-78].

62See Table 4.28.
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TABLE 4.9. EXPERIMENTAL AND THEORETICAL VALUES OF n /148
AND < AFTER [72].

X=1,27 C X =3,21Cm X=10 Cm
P C  e S Cm r.10. 

c

0 5,5 88,2 3,34 17,72 4,94 2,86 7,28 2,86 9,03 1,37
,92 -7 ,31 2,83 9,04 1,37

10 5,5 84,2 2,39 12,68 5,55 2,91 7,73 2,43 8,89 0,982
5,60 2,92 7,88 2,39 9,00 0,989

20 5,5 80,36 1,80 9,55 6,25 2,86 8,08 1,97 8,83 0,739

6,20 2,83 8,16 1 8,87 0,737

30 5,5 76,7 1,39 7,37 6,75 2,67 8,11 1,57 8,78 0,558
6,71 2,64 8,25 1.58 8,70 0,559

40 5,5 73,1 1,12 5,94 7,00 2,40 8,20 1.29 8,53 0.442
7,02 2,39 8,21 1,28 8,51 0.440

Note: The numerator gives the data obtained experimentally,
and the denominator, those obtained by calculation. The
column rT1061 C gives the values which we calculated from
formula (4.15).
Note: Commas indicate decimal points,

TABLE 4.10. EXPERIMENTAL VALUES OF DIELECTRIC CONSTANTS OF
WATER AT t = 200C, OBTAINED BY VARIOUS AUTHORS AFTER [74].

xcm 6' "* ,Cm s' " xMM n s' "

23,6 76,6 5,20 3,58 61,5 26,4 0,313 2,07 0,54 4,0 2,33
11,0 78,9 10,9 3,48 68,5 28,6 0,152 2,03 0,385 3,95 1,57
10,4 78,6 12,1 3,0 65,1 31,6 0,117 2,05 0,350 4,09 1,43
10,0 78,2 13,1 2,8 54,6 33,9 0,109 2,03 0,303 4,02 1,24
9,7 78,1 15,2 1,57 44,1 37,2 0,092 1,98 0,340 3,80 1,35
9,35 78,0 12,1 1,27 30,6 35,7 0,063 1,74 0,53 2,74 1,84
6,16 75,8 18,5 1,24 35,0 36,2 0,052 1,67 0,47 2,57 1,57
6,1 73,2 18,1

Note: Commas indicate decimal points.

In 1951, K. S. Shifrin's book [81] was published, which gave the refractive
and absorption indices of water in the lower portion of the submillimeter range,
similar to the data of Rubens [75] and Cartwright [76-78]

In 1952 Lane and Saxton published a paper [82] which presented the results
of measurements of the absorption index of water at temperatures of -8 and
+500 C at wavelengths of 0.62,.1.24, and 3.21 cm (Table 4.12).

6 3See Table 4.10.
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TABLE 4.11. VALUES OF PARAMETERS As is evident from a comparison of

E , c, X IN DEBYE'S RELATION Tables 4.12 and 4,9, the close agreement
s 0 s between the results of theoretical cal-
AFTER [74]. culations [82] and measurements [72]

is observed not only in the centimeter

_ ', s cm range, but also in the millimeter range
of radio waves. This also follows from

0 87,8 4,1 3,15 the data of Table 4.13, which we cal-
20 * 80,1 4,1 L,75I0,05 culated from formulas (4.16) by using
40 73,0 4,1 1,05 the parameters of Table 4.9 at X =

= 0.62 CM.
Note: Commas indicate decimal
points. When expression (4.14) is taken

into consideration, the e' and E" values

of Table 4.7 lead to much greater differences of K from the data of [72]. An
important step forward in [82] in comparison with previous studies was the in-
vestigation of the dielectric properties of supercooled water. Lane and Saxton

[82] found that the dielectric constants of supercooled water change continuous- /150
ly in the rapge from 0 to -80 C. This is explained by the fact that the absorp- -
tion and dispersion of water are related to the mechanism of dipole relaxation,
and this relaxation in turn is determined by the viscosity of the liquid. As
was shown by J. Goe and T. Godfrey [83], there is a continuous dependence be-
tween viscosity and temperature.

TABLE 4.12. EXPERIMENTAL VALUES OF K AFTER [82].

t C =0o,62cm =1,24c x=3,21cm t c =o 0,62 Cx= 1,24mI X =3,21 cm

-8 1,77 2,55 - 20 2,59 2,86 2,00
0 2,04 2,77 2,89 30 2,70 2,67 1,60
10 2,37 2,90 2,44 40 2,70 2,41 1,29

Note: Commas indicate decimal points.

TABLE 4.13. VALUES OF K OF WATER AT In the paper [84], which was a
X = 0.62 CM, CALCULATED FROM THE PA- continuation of.[82], on the basis

RAMETERS OF TABLE 4.9. of available experimental data [82]
in the millimeter range of change in

to c... . 0 0 20 30 40 X, Saxton refined the parameters es,

S..... 2,05 2,36 2,58 2,67 2,68 E0, T and T1 entering into Debye's

expressions (4.12), (4.10). Using
Note: Commas indicate decimal points, these refined parameters (Table 4.14),

he plotted the dependences of e' and

C" of water on X (Figure 4.2) at
t = 20 0 C and 0.1 cm < X 10 cm.
Some curves are also given in [85].
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TABLE 4.14. REFINED VALUES OF THE PARA- To compare the dielectric

METERS E , 0, AND T OF WATER AFTER [84]. constants of water given in [84]
with other experimental and

NOTE. VALUES AT t = -100C OBTAINED [82] theoretical values, Table 4.15
BY EXTRAPOLATING THE DATA AT t = -80C. lists ' and v" values at t -

lists El and a1 values at t =
= 200C, which we calculated from

toc eo so -'0-se o"2 sec the data of Table 4.14. It is
evident from a comparison of the

-- 10 92,3 4,9 27,5 32,3 data of Tables 4.15 and 4.10 that
0 88,2 4,9 18,7 22,4 the dielectric constants calcu-
10 84,2 4,9 13,6 16,6
20 80,4 4,9 10,1 12,6 lated from the new parameters are
30 76,7 4,9 7,5 9,5 in satisfactory agreement with
40 73,1 4,9 5,9 7,5 the experimental data at A = 10 cm

and in poor agreement at A = 3 cm.
However, the best approximation

Note: Commas indicate decimal points' to c from Table 4.10 at both

wavelengths is given by the
calculation64 made by using the

parameters of Table 4.4. More-
TABLE 4.15. E' AND E" VALUES OF WATER parameters of Table 4.4. More-
CALCULATED AT t = 200C FROM THE PARA- over, the values of Table 4.5

CALCULATED AT t = 20C FROM THE PARA- are also in good agreement with
METERS OF TABLE 4.14. the experimental data given in

Table 4.1 for X = 10 cm and in /151
X cm . .10,0 3,0 0,6 0,3 0,1 poor agreement with the data

S.....77,76 58,72 10,72 5,73 5,11 shown in Figure 4.2 for X =
s ..... ... 13,87 34,15 21,64 11.61 4,00 0.6 cm.

- 0.6 cm.

As was noted by Saxton, the
Note: Commas indicate decimal points. refined parameters of Table 4.14

describe the dielectric proper-
ties of water much better in the

TABLE 4.16. EXPERIMENTAL VALUES OF E', range A > 10 cm.

l" AND es OF WATER AT X = 3 CM AND X = Saxton [84] also made an

= 10 CM AFTER [87]. attempt to plot the dependences
of e' and E" of water at X <
< 0.1 cm. -As is evident from

4=3 cm ~=io1cm Figure 4.3, the Debye model is
Pc es 1 unsuitable for obtaining such

' e_ __I e dependences. Saxton used
G. Froehlich's theory of reso-

,5 87,57 38,0 39,1 80, 25,0 nance absorption [86] as the

15 82,23 49,0 34,3 78,8 16,2 basis for the study of the
25 78,54 55,0 29,7 76,7 12,0 dielectric properties of water
35 75,04 58,0 25,5 74,0 9,4
45 71,70 59,0 23,6 70,7 7,5 in the submillimeter range of

radiowaves. The calculations
were formed by using the

Note: Commas indicate decimal points. formulas

64See Table 4.5.
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where /152

-o= 6.67 - 1012, a - 3 o8 4 10- 14,

As=s60 - 01, o -4.9, o01= 1,8. (4.17b)

80 0 6

so3- o

Sf - b

o 2
o ,i ' ' Figure 4.3. e' and e" of Water

. 1, vs. X at t 20 0 C After [84].
a, Component e" of Debye dis-

Figure 4.2. Theoretical persion; b, Component e" of
(1) and Experimental (2) Froehlich resonance absorption;
Sand " Values20C After [84]. c, Experimental data [76-78].

= 200C After [84].

From Figure 4.3 it is also evident that formulas (4.17a) give a complex

dielectric constant of water that is in good agreement with the data of [76-78].

Maryott and Buckley [87] gave experimental values of e', E" and Es of water

as functions of temperature at X = 3 and 10 cm, obtained at the Insulation

Research Laboratory of the Massachusetts Institute of Technology during the

period 1948-1953. These values are listed in Table 4.16.

Let us note that some e' and E" values in Table 4.16 are in poor agreement
with the calculated values given in Tables 4.7 and 4.15, and also with certain

other experimental data mentioned above.

In 1953, P. Hertel, A. Straiton and C. Tolbert published a paper [88] in

which they reported that the E values of water measured at 8.6 mm wavelength
practically coincided with Saxton's calculated data [85] obtained with the
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parameter values given in Table 4.14. In the same year, V. Little [89] publish-
ed results of his experiments at wavelengths of 9.16-11.12 cm at t = 210 C (Table
4.17). His results at X = 10 cm were in good agreement with the data of Tables
4.15, 4.10, 4.9 and 4.5 only for e'.

Two years later, J. Poley [90] presented measurements of e of water in the
range 0.802-3.99 cm at t = 200C (Table 4.18) which were close to the e values
listed in Tables 4.3, 4.9, 4.10, etc.

TABLE 4.17. EXPERIMENTAL DATA ON e' TABLE 4.18. EXPERIMENTAL DATA ON
AND e" OF WATER AT t = 210C AFTER [89]. E' AND e" OF WATER AT t = 200 C

AFTER [90].

X cm C' ,"

9,16 77,0 14,8
9,75 77,6 14,0
10,00 78,0 13,5 3,99 70,1 24,6
10,57 78,1 13,0 3,55 67,7 27,'1
11,12 78,5 12,2 3,20 61,8 32,0

1,25 31,5 35,5
0,802 21,34 29,6

Note: Commas indicate decimal points.

G. Strivasava and Y. Varshni [91] performed a careful experiment to deter-
mine the temperature dependence of the static dielectric constant Es . They also

attempted an analytical description of the function as = f(T), where T is the

absolute temperature (T = 273 + t). In so doing, they used the Debye representa-
tion (4.6). Finding Es from the latter, it is easy to obtain

B
s = A + T+--, (4.18)

where A, B, C are some constants.

Treatment of the experimental data gave the relation /153

62445
s= T- 70.91. (4.19)
s T+120

As is evident from Table 4.19, the calculated and the experimental values
are in good mutual agreement.

Later, the same authors found [92] that the relation

60677.53
ST 12.95 - 69.03 (4.20)s T + 112.95

better describes the results of their measurements.

We will cite at this point the paper [93], which is somewhat related to the
studies of [91, 92], in which the following dependence of es on temperature
toC was found:
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s = 78.57 [1 - 0.00461 (t - 25) + 0.0000155 (t - 25) 2].

However, as was noted by the authors of [93], in the range of t from 4-10"C,
this formula is unsuitable for specific calculations.

TABLE 4.19. CALCULATED (jE ) AND TABLE 4.20. EXPERIMENTAL E VALUES
OF WATER AT t = 20aC AFTER [94].

EXPERIMENTAL (se ) VALUES OF THE

DIELECTRIC CONSTANT OF WATER AFTER
[91]. Xcm ,' ," n

TK sp s . Error 1,36 28,0 34,1 6,0 2,84

sp s 0,85 17,5 27,3 5,0 2,73
0,63 14,7 24,4 4,6 2,62

273 87,98 88,01 +0,034 . -0,43 8,9 16,9 3,75 2,26
287 82,51 82,7 . +0,23'
298 78,48 78,57 +0,11
323 70,05 70,28 +0,32

Note: Commas indicate decimal points.

Note: Commas indicate decimal points. In 1959, N. S. Zinchenko [94]
performed measurements of E at t=

= 200 C and X = 0.43 to 1.36 cm (Table 4.20). Results of the measurements were
compared with those of calculation using formulas (4.12). As reported in [95],
the parameter e0 was assumed equal to 5.5, and the remaining parameters were

chosen from Table 4.14. The experimental values were found to differ from the
calculated ones by no more than 5-10%. If one compares the data of Tables 4.20
and 4.7, one can see that at X = 0.43 and 0.63 cm, the se and e" values agree
to within 8-15%, whereas at X = 0.85 cm, within 30%. At the same time, the ex-
perimental data of [94] differed from the results of [90] at X = 0.85 cm by
8-30%, and from the results calculated from the parameters of Table 4.14 by
15-38% at all the wavelengths considered.

In the same year, R. Rampolla, R. Miller, C. Smyth [96] published resalts
of a measurement of the dielectric properties of water at t = 200 C at a wavelength
of 0.31 cm. These values were: e' = 8.5, e" = 12.0, n = 3.31, K= 1.76. The
errors. in the determination of e' and e" were 0.5 and 2.5% respectively.

These values differ from the data on E' and e" given in Table 4.5 by 0.3
and 16%, and data on E' and e" given in Table 4.14 by 32 and 3%.

Thus, the values measured in [96] at X = 0.31 mm are in better agreement
with the calculated values obtained by means of the parameters of Table 4.4.

In the same year, L. D. Kislovskiy [97], who performed measurements of
absorption and reflection of water under conditions of model representations
which he developed, calculated n and K of water at t = 200 C and 2 pm < X < 200 m.
Results of this calculation are presented in Figure 4.4.

Two years later, A. Ye. Stanevich and N. G. Yaroslavskiy [98] used direct
experimental measurements of the absorption of water to study the dependence of
K on X for 42 pm < X < 2000 pm at 250C (Figure 4.5).
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Figure 4.4. Experimental Dependence of Figure 4.5. Experimental Dependence of
n and K of Water on X at t = 200C [97]. K on X at t = 250C After [98].

The data shown in Figure 4.5 are in good agreement with those of Table 4.10
and Figure 4.4.

In 1966, Lane [99] analyzed the agreement in the submillimeter range between
the new experimental data [100, 98],and the data obtained by Saxton [84] from
formulas (4.16) and presented in Figure 4.3.

Figure 4.6, taken from [99], shows a completely satisfactory agreement
of the curves under consideration.

In the same year, K. A. Goronina, R. K. Belov and E. P. Sorokina [101]
measured the dielectric constant of water for 1.6-1.2 mm wavelengths at t = 160C
(Table 4.21) and also the dependence of the loss tangent and of the expression

V(,)65 + (e")65 on temperature at X = 1.6 mm (Figure 4.7). /155

TABLE 4.21. EXPERIMENTAL E' AND E" VALUES OF The paper [202]
WATER AT t = 160C AFTER THE DATA OF [101]. pointed out the inaccuracy

of the calculation made
Xmm . ..... 1,2 1,25 1,42 1,47 1,53 1,6 in (101], which led its

' 0,5. . . . 5,7 6,2 5,4 5,4 5,7 5,8 authors to the incorrect" 40,5 ..... 5,5 6,4 6,9 6,9 7,4 7,4 assertion that a good

agreement existed between

Note: Commas indicate decimal points, the results of measurements
and the values obtained f
from the Debye formula.

Let us also mention the important paper by A. I. Khvostova [103], in which
the dielectric constant of water was measured at 0.85 mm wavelengths: e' = 6.2,
a" = 3.6. This is equivalent to the fact that n = 2.58, K = 0.696.

These values are in good agreement with the data [98-100] . In addition to
studies of the electrical properties of water at increasingly shorter wavelengths

6 5The water temperature was not indicated in [103].
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Figure 4.6. Dependence of K of Water Figure 4.7. Experimental Values

On X According to Data of Different of '/ T + (,")' (1) and , (2)
Authors.
1, Data-of Saxton [84]; 2, Measure- of Water at Different Temperatures

ments of Draegert et al., [100]; 3, for X = 1.6 mm After [101].
Measurements of Stanevich and Yaro-

slavskiy [98].

more accurate experiments were also set up in the region 10 cm < X < 20 cm.

One of such rare studies in which e' and e" of water were closely studied at

t = 200 C is that of H. Hoffman [104] (Table 4.22). The e' and e" values which

he measured agree with the data of Table 4.15 to within 1.8 and 10% and with the

data of Table 4.7, to within 10 and 8%, respectively.

TABLE 4.22. EXPERIMENTAL It should be noted that as the experimental

s' AND s" VALUES OF WATER data were gradually refined, attempts were also

AT t = 200C AFTER [104]. .made to describe them better by means of the

so-called generalized Debye equation proposed

by K. Cole and R. Cole [105]:

C = E + S 0 (4.21)
0 1 + (i)' -  (4.21)

9,00 76,0+0,7 12,1+0,4
10,00 76,35 T 0,5 11,4 0,25
10,80 76,4±F0,5 10,9T0,25 where a is an empirical parameter taking values

17,76 77,6+0,5 6,70, 15 between 0 and 1. Separating the real part from
22,52 77,9T0,5 5,2-0,15 the imaginary part in expression (4.21), we

Note: Commas obtain:

indicate decimal

points. (s - SO) 1 + (mt) sin

S+ 2 ()' -sin f + (o)2 (I
- )

2 (4.22)

(es - so) (0)1- cos 2

+2 ( sin + (o2(-a)

when a = 0, relations (4.22) become (4.12).
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It is easy to see that when the parameter a is introduced into the Debye
relations, the frequency dependence of e decreases somewhat.

When w - 0, according to formulas (4.22), the dielectric constant is equal
to Es, and when w - o, to E01

While studying the dielectric properties of polar liquids, R. Fuoss and
J. Kirkwood found [106] that when the value of parameter a is suitably chosen,
equation (4.21) better reflects the frequency of c.

Treatment of the experimental data for water with the aid of relations (4.22),
performed by E. Grant, T. Buchanan, and H. Cook [107] showed that a better
agreement is obtained for a = 0.02 and e0 = 4.5 with Xs and cs practically the

same as the corresponding data of Table 4.9. These authors note that the
dielectric constants determined from equations (4.22) better describe C of water
at X = 313 and X =!152 pm (see Table 4.10).. However, our analysis has shown that
the values calculated for X < 313 pm differ from the experimental ones (see Table
4.10) by 7-12% in n and 30-70% in K.

Let us note at this point that treatment of experimental data showed in
[108] that the values c0 = 5.0, a = 0.02 better describe the measurement results

than similar values obtained by the authors of [107].

We should also consider the generalizing studies [109] and [l10]. Thus,
E. Nora [109] averaged the data of [82, 111, 107, 96] on the Debye parameters
E0 and ES (Table 4.23) and obtained an average E0 equal to 5.0 ±0.4 (independently

of temperature).

Using an analogous approach, J. Hasted [110] arrived at X values that
s

practically coincided with the data of Table 4.9: 0 = 5.5 il, a = 0.02 ±0.007.

TABLE 4.23. AVERAGE VALUES OF THE PARAMETERS c0 AND es AFTER [109].

t C so  E t C o  s

0 4,91 + 0,45 87,90 30 4,93 + 0,52 76,58
10 5, 14+ 0,50 83,95 40 4,77 + 0,59 73,15
20 5,86 + 0,74 80,18 50 4,42 + 1,12 69,88
Note; Commas indicate decimal points.

We will also mention the study [112], in which on the basis of theoretical
treatment of experimental findings it was determined that the Debye equation
(4.16) with the parameters of Collie, Hasted and Ritson (see Table 4.9) very
adequately describes the permittivity of water in the range 0.1 cm < < 14 cm
(Figures 4.8 and 4.9).
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Figure 4.8. Experimental and Theoreti- Figure 4.9. Experimental and The-

cal Values of the Refractive Index n of oretical Values of the Absorption

Water at t = 200 C after [112]. 1, Index K of Water at t = 20
0C After

after [82]; 2, [113]; 3, [96]; 4, [76]; [112]. 1, Debye curve; 2, after

5, [112]; 6, [112); 7, Debye curve; [82]; 3, 9, [112], 240C; 4, [100],

8, after [72]. 300C; 5, [96]; 6, [98]; 7, [72];
8, after [113].

Comparison of the experimental and Debye curves in the submillimeter range,

however, shows that n and K calculated from formulas (4.16) with the parameters

: e , AX from Table 4.9 contain an error of the order of 20 and 60% respec-

tively.

The paper [112] also gives results of experimental studies of the tempera-

ture dependence of n and K of water at a wavelength of 337 Um (Table 4.24)66.

TABLE 4.24. EXPERIMENTAL n AND K VALUES OF WATER AT X = 337 pm AFTER [112] /158

t" C n 11c

- - I L - --- -- --- --

0 2,15 - 20 2,16 0,514
10 2,15 - 30 2,17 0,648
18 2,16 0,469 40 2,20 0,737

Note: Commas indicate decimal points.

On the basis of the experimental studies surveyed above, the following

analytical dependences of es and Xs on temperature were obtained on a computer

by means of the least squares method [102]:

661n [112], the data of Table 4.24 are presented in the form of curves and K

is given in nep/cm.
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Es = 0,00081t
2 _ 0,40885t + 88,2, (4.23)

A = 1.466 2-0.0634t + 0.000136t 2 - 0.027296t + 1.8735116, (4.24)

which apply over a wide temperature range, from -40 to +75
0 C. Let us note that

in deriving relations (4.23), (4.24) only those measurements which were made at
subzero temperatures were taken into consideration. In addition, we proceded
from the assumption that if relations (4.23), (4.24) correctly describe the

behavior of £ and X at t > 0, they should also automatically apply at t < 0.

This follows from purely experimental studies by Saxton [82], in which he showed
and proved 67ithat when t changes continuously from 0 to -80C, all the constants
change continuously.

Table 4.25 lists values of E and A
s s

t1.12- calculated from formulas (4.23) and (4.24).
f00

If the values of E at t > 0 in Tables
N\ 4.25 are compared with experimental data of

other authors (see Tables 4.4, 4.9, 4.11,
4.14, 4.16, 4.19 and 4.23), the differences
amount to no more than 1%. Thus follows the
subzero temperatures are concerned, Saxton's

of data (see Table 4.14) for t = -100C, E =

O 20 = 92.3 practically coincide with ours (Table
4.25): E = 92.37.

Figure 4.10. Temperature De- If one extrapolates the approximation
pendence of T After [84, 114]. [91] of es (4.19)-(4.20) into the region of
1, Experimental points. subzero temperatures, ES values differing

from ours (Table 4.25) by not more than 0.8%
are obtained. From the standpoint of the calculations, (formula (4.19) must
evidently be acknowledged to be simpler and more valid than (4.23).

The X values listed in Tables 4.25 and 4.9 all coincide and differ from t /i59s

the data of Table 4.14 and Figure 4.10, plotted from the values of Table 4.14
extrapolated into the region of low temperatures according to [114], by not
more than 7%. Such a difference may be explained only by a low choice of a0
in [84], as was pointed out, for example, in [112].

67For more detail see p. 150.

159



TABLE 4.25. TEMPERATURE DEPENDENCE OF THE PARAMETERS a AND

X AFTER [102].

to c es s tO C to C s x,

-40 105,85 20,97 1 87,80 3,22 22 79,60 1,70
-38 104,90 18,81 2 87,89 3,11 23 79,23 1,66
-36 103,97 16,89 3 86,99 3,01 24 78,86 1,62
-34 103,03 15,19 4 86,58 2,90 25 78,49 1,58
-32 102,11 13,69 5 86,18 2,81 26 78,12 1,54
-30 101,19 12,35 6 85,78 2,72 27 77,76 1,50
-28 100,28 11,16 7 85,38- 2,63 28 77,39 1,46
-26 99,38 10, 10 8 84,99 2,55 29 77,03 1,43
-24 98,48 .9,16 9 84,59 2,47. 30 76,67 1,40
-22 97,59 8,33 10 84,20 2,39 31 76,31 1,36
-20 96,70 7,58 11 83,81 2,32 32 75,95 1,33
-18 95,82 6,92 12 83,42 2,25 33 75,60 1,30
-16 94,95 6,32 13 83,03 2,18 34 75,24 1,27
-14 94,08 5,79 14 82,04 2,12 35 74,89 1,24
-12 93,22 5,32 15 82,26 2,06 36 74,54 1,22
-10 92,37 4,90 16 81,87 2,00 37 74,19 1,19
-8 91,52 4,52 17 81,49 1,95 38 73,84 1,17
-6 90,68 4,17 18 81,11 1,89 39 73.49 1,14
-4 89,85 3,87 19 80,73 1,84 40 73,15 1,12
-2 89,02 3,59 20 80,35 1,79
0 88,20 3,34 21 79,98 1,75

Note Comma indicate decima points.

Among tne stuales enumerated above, we should mention particularly that of

A. Ye. Basharinov and B. G. Kutuza [115], which gave experimental value6 8 of T0

of supercooled water at temperatures from -2.5 to -12.5
0 C (Table 4.26).

TABLE 4.26. EXPERIMENTAL -r VALUES OF WATER AFTER [115].

observa ~ on sessions . .1 2 3 4 5 6 7 8.
SC . . . . . . . .. -12.5 -8 -7 -4 -2,5 +2 +2 43-
o.-1012c ...... .. . 2.60 2.20 2,07 1,91 1,67 1,75 1,27 1.20

On the basis of treatment of experimental data
6 9 [72], the temperature

dependence of the relaxation time T0 of the molecule was obtained in the 
same

paper to within 5% 2074.8
e274+ ) .'10 - 12sec, t> O. (4.25)

For t < 0, the authors of [115] propose another temperature dependence: /16

( 2457 *e 273+t 10-12 e 0o. (4.26)
o • 10-  see <0.

The X values calculated from formulas (4.9), (4.15) with consideration of
S

expressions (4.25) (Table 4.27a) and (4.26) (Table 4.27b) show that 
the data of

68See expression (4.9).
6 9See Table 4.9.
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[115] differ from ours (Table 4.25) by several percent (not more than 7%). At
the same time, the same values of [72] are approximated 80-100 times more
accurately 7 0' by relation (4.24), continuous in t [102]. The final n and K values
of water determined from formulas (4.12), (4.9), (4.23), (4.25), (4.26) agree with
ours to within 5%.

At the same time, our calculated K values of supercooled water (see appendix)
differ from those measured experimentally by Lane and Saxton (see Table 4.12) at
t = -80 C at wavelengths 0.62 and 1.24 cm by 1.7 and 0.7% respectively.

TABLE 4.27. VALUES OF X CALCU- Let us examine E0 somewhat more

LATED ON THE BASIS OF DATA OF [115]. closely. The survey of theoretical studies

al bl given above indicated e0 values obtained

C X c X by different authors in the course of a
s s mathematical description of resultant

experimental studies of dielectric
0 3,54 10 3,30 constants of water in various portions of-- 10 5,21 10 2,41

-20 7,88 20 1,79 variation of X. Thus, for approximately
-30 12,29 30 1,35 the same s , X values, the following e0-40 19,82 40 1,04 s f 0

values were obtained: 5.5 [72-112];

Note: Commas indicate 4.5-5.5 as a function of t [69]; 4.1 [74];
decimal points. 4.9 [84]; 5.0-6.6 [111]; 5.0 ±0.4 [108];

1.77 [116]; 1.8 [117], etc.

In order to explain the dependence of the refractive index n and absorption
index K on 0 and a entering into the generalized Debye equation, a numerical cal-

culation was performed using formulas (4.16) for PO = 1.8 to 5.5, temperatures

of 0, 20, 400 C and X = 10 to 0.0152 cm. Results of this calculation at t = 200C
are shown in Table 4.28. It is apparent from the table that the maximum variations
of n and K as functions of changing cO amount to respectively: 1.6 and 6% in the

lower portion of the centimeter range, 28 and 35% in the millimeter range, and
50 and 80% in the submillimeter range.

Analysis of the refractive and absorption indices calculated at 0 and 400 C
and their comparison with the data listed in Table 4.28 lead to the conclusion
that as the temperature rises, the dependence of n and K on eO weakens somewhat,

and in the centimeter range of change in X, the variations in eO in the range

from 1.8 to 5.5 at all the temperatures considered essentially do not affect n /161
and K of water. This apparently also explains the fact that large differences
in cO values used to calculate the dielectric constants of water by many

investigators led to approximately the same final results.

7 0 1n contrast to 'elations (4.25), (4.26).
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TABLE 4.28. DEPENDENCE OF DEBYE RELATIONS OF n AND K OF
WATER AT t = 200 C on cO .

X=loCm X=3 C X= 1,25 C'm O,8 o.s cr

n n x fl II X

1,8 8,86 0,77 8,02 2,16 6,06 3,04 4,88 2,99
2,3 8,86 0,77 8,02 2,14 6,07 3,01 4,90 2,96
2,8 8,86 0,76 8,03 2,12 6,09 2,99 4,92 2,93
3,3 8,86 0,76 8,03 2,11 6,10 2,96 4,95 2,90
3,8 8,86 0,75 8,04 2,10 6,12 2,93 4,97 2,86
4,2 8,86 0,75 8,04 2,09 6,13 2,91 4,99 2,84
4,5 8,86 0,74 8,04 2,08 6,14 2,90 5,00 2,82
4,7 8,86 0,74 8,04 2,07 6,14 2,89 5,01 2,81
4,9 8,86 0,74 8,05 2,07 6,15 2,88 5,02 2,79
5,1 8,86 0,74 8,05 2,06 6,16 2,87 5,03 2,78
5,3 8,86 0,74 8,05 2,05 6,16 2,86 5,04 2,77
5,5 8,86 0,73 8,05 2,05 6,17 2,85 5,05 2,76

k=0,1 cm =0o,08 c =0,0337 Cm A=0,0152 cm

n a n x n x u x

1,8 1,85 1,18 1,73 1,01 1,44 0,51 1,37 0,24
2,3 1,95 1,11 1,83 0,95 1,59 0,46 1,53 0,21.
2,8 2,04 1,06 1,94 0,89 1,73 0,42 1,69 0,19
3,3 2,13 1,00 2,04 0,84 1,86 0,39 1,83 0,18
3,8 2,22 0,96 2,14 0,80 1,99 0,36 1,96 0,17
4,2 2,30 0,92 2,22 0,76 2,08 0,34 2,06 0,16
4,5 2,35 0,90 2,28" 0,74 2,15 0,33 2,13 0,15
4,7 2,39 0,88 2,32 0,73 2,20 0,32 2,17 0,15
4,9 2,42 0,86 2,36 0;71 2,24 0,32 2,22 0,14
5,1 2,46 0,85 2,40 0,70 2,29 0,31 2,26 0,14
5,3 2,50 0,84 2,43 0,69 2,33 0,30 2,31 0,14
5,5 2,51 0,83 2,47 0,67 2,37 0,30 2,35 0,14

Note: Commas indicate decimal points.

Treatment on the computer of all the above results of measurements of the

dialectric constant of water in the range 0.08 < X < 20 cm at different temper-

atures confirms the conclusion reached in [L12] and elsewhere that c0 = 5.5 is

the best constant from the standpoint of agreement of the theoretical and
experimental data.

Thus, calculating n and K of water from formulas (4.16), (4.23), (4.24) for

CO = 5.5, A = 0.08 cm, t - 220C, we obtain n = 2.48, K = 0.70. Comparing these

values with n = 2.58 and K = 0.696, obtained by A. I. Khvostova [103] experi-

tally at X = 0.085 cm (see p. 155 ) we see that even in the upper portion of the

submillimeter range, the discrepancies of the calculated and experimental values

do not exceed 5% in n and that there are no discrepancies at all in K.

If these coefficients are calculated with our formulas for X = 0.3 cm,
t = 200C, we obtain n = 3.31, K = 1.84, against the experimental values of

Rampolla, Miller and Smyth [96], n = 3.31, K = 1.76 (see p. 154 ). In this case,
our values of n given in [96] agree, and K differ by not more than 3.3%.
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Analysis of the generalized Debye equation (4.22) and calculations of n and
K for different E0, c and tOC show that it is impossible, by introducing the

parameter a into expressions (4.16), to substantially decrease the accuracy of
the agreement between the theoretical and the experimental results, or, for
approximately the same accuracy as in the case of a = 0, to expand the range of
change of X toward wavelengths shorter than 0.08 cm.

n t=41O°C

20

6-

4 \0

-20

0.1 0,2 0.3 04 05 0,7 1 3 5 9 13 cm ,

Figure 4.11. Dependence of n of Water on Wavelength X at
Different Temperatures-

Figures 4.11 and 4.12 show individual results 71 of our calculations of n and
K of water from formulas (4.14),(4.16), (4.23), (4.24) for E0 = 5.5.

Analysis of the dependence of n on X and t (Figures 4.11) show that the
refractive index of water at each temperature depends on the wavelength in the

range of its change from 0.1 cm to a certain magnitude of X(t) . The latter inmax
turn depends on t: the lower the water temperature, the greater the maximum

(t)value of max starting at which the refractive index practically ceases to
change with increasing wavelengths. For example, X(40) = 9 cm; X(20) = 14 cm;

max max

) = 20 cm; (- 2 0) = 27 cm.
max max

For the range 0.08 cm < X < 0.1 cm, n may be considered independent of both /163
wavelengths and temperature.

From Figure 4.11 it is also evident that at a fixed temperature, the dependence
of n on X is increasing. A similar character is exhibited by the dependence

t at -400 C < t < 40°C and a fixed wavelength in the range 0.08 < X(4 0 ) . At
(40) max

X > X (40) the character of the dependence becomes somewhat more complicated,max

71Detailed values of e', e", n, K of water at wavelengths of 0.08 to 20 cm at
temperatures from -40 to 400C are given in the appendix.
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and the magnitude of the highest value of n as a function of A increases with /163
rising temperature.

As shown in Figure 4.12, the absorption index K depends more on the wave-
length and temperature than n, this being true of the entire range of change
in A and t under consideration. To each temperature there corresponds a
wavelength at which this index has a maximum value Kmax. Moreover, the higher

the temperature, the lower Kmax and the smaller the wavelength at which the

maximum of K is reached.

3.0

2.5

2.0 -

1.5

1.0
0

0006 0.1 0,2 0.3 0,4 0,5 0,7 1 3 5 .9 13 g9 X cm

Figure 4.12. Dependence of K of Water on Wavelength X at
Different Temperatures.

In 1969, a paper by V. M. Zolotarev et al. was published [118] which gave
results of a study of f and K of water at t = 250C by means of four indenendent
methods (transmission, reflection, NPVO and Kramers-Kronig methodsT over a
wide spectral range, 1-106 pm, results which agreed with an accuracy of not
more than 3% with thosi reported in the literature. Tabe 4.29 lists only
values of A from 50 pm to 10 cm. The corresponding values of n and K for
X < 50 pm may be found in [118-124].

We will also note the paper [125], in which measurements of the dielectric
constant of water were made at 2.0-0.8 mm wavelengths at t = 210C. The results
are shown in Table 4.30.
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TABLE 4.29. VALUES OF n AND K OF WATER AT t = 250 C AFTER [118]. /164

50,Y 1m 1,582 0,503 250,0 1m 2,157 0,536
60,0 1,715 0,593 500,0 , 2,409 0.74
62,5 1,750 0,595 0, I cM 2,663 1,02
75,0 1,868 0,563 0,5 4,162 2,33
100,0 1,986 0,527 1,0 5,697 2,90
150,0 2,074 0,486 5,0 8,553 1,48
200,0 2,120 0,500 10,0" 8,856 0,74

Notl ; Comnas ind te.decimal poi ts,

The authors of [125] state that at X < 2 mm, the experimental c values
of water are in poor agreement with the values obtained from the Debye relations.
Noting that the data of [1253 disagree with the measurements of [101] given in
Table 4.21, [103] and Table 4.29, the authors indicate that these differences
cannot be explained by measurement errors.

TABLE 4.30. EXPERIMENTAL e' AND e" VALUES OF WATER AT t = 210 C
AFTER [125].

1,5 1,3 1,0 0,8

' 0,3 5,35 4,98 4,43 4,46.
s" + 0,25 6,60 5,80 j 4,45 3,96
Note; .Commas indicate decimal Doints.

Finally, we will mention the paper [126], which recommends the use of the
Debye equation in the submillimeter range after a suitable correction allowing
for the dielectric dispersion of water in the infrared region. The following
expressions are thus obtained:

s - 6Eres s -res (4.26a)
+rs I ( 1 )2

where E'res, Eres are determined from formulas (4.17a), (4.17b), Tr = 3.2858
.10-14, 0 = 7.793 . 1012'at t = 200C, expressions that adequately describe

the experimental data and are in agreement with the Debye expressions (4.16)
at A > 0.8 mm (Figure 4.13).

On the basis of [100], the authors of [126] found that the dependence of
E of water on temperature t in the submillimeter range is close to linear:

s' (t) = ' (to) + k, (t - to),
" (t) (t) o(t) k2 (t - t0); (4.26b)

the kI and k2 values for different X being shown in Figure 4.14. Figure 4.15 /165.

illustrates the temperature dependence of the dielectric constant of water in
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the submillimeter range. It is evident s' is practically independent of t, and

that e" changes a little more markedly, but still very slightly (increases) with

rising t.

The paper [126] also gives results of measurements of E at X = 0.86 
mm and

t = 200C (E' = 4.9, e" = 4.2, 20% error), X = 0.98 mm and X = 1.5 mm at t = 8 

+ 650 C (10-12% error), which satisfactorily agree with the calculated 
data.

30so 0.5 -

25\ 0
15 - 05 - 0,02

o01 

10 0,005

0

c4002

1o 5 2 1 ..o5 0.20.1 Amm

Figure 4.13. Dielectric Constant of Water Figure 4.14. Dependence of k1
at t = 200C After [126]. and k2 on X.

e' (1) and E" (2) calculated after Debye 1, k at t < 40C; 2, k at

(4.16); E' (3) and e" (4) calculated 1 1

from formulas (4.26a); e' (5) and e" (6) t > 406C; 3, k2
obtained in [1263.

Figure 4.15. Dependence of e' and

\ - E" of Water' on Temperature After

5___ _[126].

___, _ 1 - I, 00C; 2, 10aC; 3, 200 C; 4, 400C.

2 0 0 464 .2 0.f lX

166



Let us also note that the e values of water at X = 0.86 mm [126] agree
with little experimental error with the data which we calculated from the Debye
equations (see appendix).

§ 4.2. Dielectric Constant of Ice and of a Homogeneous Mixture of Water With /166
Ice and Snow.

There are only .a few studies [120-132, 135, 1936]72, which give results of
measurements of the dielectric constant of ice for wavelengths below 20 cm.

Thus, E. Yonker [130], who performed an experiment at 3.01 and 9.18 cm wave-
lengths at temperatures from 0 to -500 C found that n of ice changes from 1.75
at X = 3.01 cm to 1.72 at X = 9.18 cm, and K is independent of wavelength and
increases (Figure 4.16) from 0.0001 to 0.0010 as t rises, tan 8o

7
7 7o0

£2
x 3 - o0

x2

f f
I I I I I I I I I I I I I I I I

tC -40 -30 -20 -10O 0 tOC -40 -30 -2L -f0 0

Figure 4.16. Temperature Dependence of Figure 4.17. Loss Tangent of
K of Ice After (130]. Ice at X = 3 cm as a Function
1,2, Experiment at A = 3.01 cm, two Temperature After [132].
different samples; 3, experiment at X =
= 9.18 cm. Two different samples.

In addition, in [130], Yonker gives values of the real and imaginary parts
of the dielectric constant of ice, which he measured at 1.25 cm wavelengths at
t = -150C: e' = 3.3; e" = 0.0011.

Later, R. Dunsmuir and J. Lamb [131] at 3 and 9 cm wavelengths, then Lamb
[132] at X = 3 cm repeated the experiment mentioned in [130] and arrived at
practically the same dependence of n and K on X and t. The data of these papers
are reflected in Table 4.33 and Figure 4.17.

72See also the reviews [127-129],
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In addition, Lamb showed in [132] that Debye's equations (4.12) suitable

for describing the dielectric properties of ice in the low frequency region of

the spectrum are completely inapplicable in its centimeter region.

The same conclusion can be reached if one compares the data of calculations /167

of [133] at X = 3 cm with the experimental values cited above. We also made

an attempt to describe the experimental data given in [130-132] by means of

the generalized Debye equation (4.22) for Es and Ts values taken from [134].

Comparison of e0 and a values calculated with a wide grid with the experimental

values of n and K [130-132] showed that no satisfactory description uniform in

X of these data can be achieved by expression (4.22) for any fixed o0 and X.

In 1949, J. Lamb and A. Turney [135] published measurements of e' and loss

tangent of ice at 1.25 cm wavelength (Figure 4.18) for temperatures from -200 to

O0C. Figure 4.18 clearly shows a marked dependence of the loss tangent at

1.25 and 3 cm wavelengths in the temperature range from -50 to O0C. In 1952,

the paper of W. Cumming [136] was published in which the temperature dependence

of the dielectric properties of ice and snow covers of different densities was

studied at 3.2 cm wavelength.

' ,tan ;B Results of these measurements,
which we recalculated for n and K,

I are shown in the form of Tables 4.31

3 4 and 4.32. 73 Table 4.33, compiled from

I data of many authors, shows that at

f 1 1.25 cm < X < cm and t < -200C, the
-- dielectric .properties of ice are

I independent of wavelength. A similar

i'I conclusion for t > -200C may appar-
ently be reached only for the range

S+ X = 3 to 9 cm.

- It is noted in [136] that the

2 x measurement results are not affected

Sby E, whether the ice used was pre-

tv -iso5 -0o -50 pared from fresh, distilled, or tap
water. Hence, such a difference in

the K.values of ice [130-132, 135]
Figure 4.18. e' (Curve 1) and Loss and [136] should probably be attri-
Tangent (Curve 2) of Ice as Functions buted to its anisotropy. This
of Temperature at X = 1.25 cm After [135]. problem is discussed in detail in

1,2, Experimental points; 3, loss [138, 110].
tangent at X = 3 cm after [132].

I73In [136], these data for p < 0.76 g/cm
3 are referred to a snow cover of corre-

sponding density. However, as will be shown below, a snow cover and ice of the

same density have essentially the same dielectric constant.
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Only three papers [101, 97, 76] devoted to measurements of the dielectric
constant of ice for waves shorter than 1 cm are known.

TABLE 4.31. EXPERIMENTAL n AND K VALUES OF ICE AT DIFFERENT DENSITIES /168
p, TEMPERATURES toC AND X = 3.2 cm AFTER [136].

x.10' attoc

g/ 0 -2 --4 -6 -8 -10 -12 - -16

0,916 1,78 23,0 1,6 12,0 10,5 8,9 7,7 7,1 6,6 6,3 6,1
0,76 1,65 14,8 10,7 8,7 7,4 6,4 5,8 5,4 4,9 4,7 4,4
0,60 1,50 10,3 7,5 6,0 5,2 4,5 4,3 3,9 3,7 3,3 3,0.

S0,46 1,38 6,9 4,8 4,1 3,4 3,1 2,8 2,6 2,5 2,5 2,5
0,38 1,31 5,2 3,9 3,3 2,6 2,4 2,3 2,2 2,1 2,0 1,8
0,34 1,27 5,0 3,7 3,0 2,3 2,0 1,9 1,8 1,6 1,4 1,3

TABLE 4.32. EXPERIMENTAL n AND K VALUES OF WET SNOW COVER AT OOC
AS FUNCTIONS OF THE PERCENTAGE (BY WEIGHT) CONTENT OF WATER p

AFTER [136].

S- .10' atP %

g/cm 0 0,2 1 0,4 1 0,6 10,81 io 1 ,21 1,4 1,6

0,38 1,31 5,2 13,7 26,2 38,0 54,4 73,4 89,7 112,0 134,0
0,76 1,65. 14,8 33,8 55,3 90,1 131,3 179,0 242,0 304,0 371,0

TABLE 4.33. REFRACTIVE INDICES n AND ABSORPTION INDICES K OF ICE IN
THE 1.25-9 cm WAVELENGTH RANGE BASED ON DATA OF VARIOUS AUTHORS.

x.1oatoc .
Author and cm n -l;V V r
Reference 0 -10 -15 -20 -30 -40 -50 -60
Yonker [130]I I I

3,01; 9,18 1,75-1,72 10,0 2,9 - 2,0 1,4 1,3 1,1 -
Dunsmuir, 1,25 1,82 - - 3,0 - - - - -

Lamb [131] 3,0; 9,0 1,75-1,72 10,5 2,85 2,29 - 1,45 - 1,1 -

Lamb [132] 3,0 1,75 12,0 2,8 - 1,9 1,4 1,3 1,2 -
Lamb, Turney[13 j . 1,25 1,77-1,78 2,7 1,9 - 1,6 1,4 1,28 1,1 1,04

Cumming' [13 6174 3,2 1,78 24 7,9 - 5,5 - - -

Note: In tables above commas indicate decimal points.
74The data of [136] were linearly extrapolated to unit density by J. Marshall

and K. Gunn [137].
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Thus, in [101], only the value of the refractive index n = 1.6 was obtained at /169

a temperature close to zero and 1.6 mm wavelengths, in [97], values of n and

K at t = -100C in the wave length range from 2 to 200 pm (Figure 4.19), and in

[76], values of K at t = -100C for several wavelengths from 52 to 152 pm

(Table 4.34).

TABLE 4.34. EXPERIMENTAL K VALUES OF ICE AT t = 100C AFTER [76].

X pm .. 52 63 83 100 117 .152

. . . . .0,27 0.30 0,22 0,08 0.03 0,03

The first studies of radar signals from melting hailstones were made by

J. Ryde [139] under the assumption that these hailstones were so small that

they constitute a homogeneous mixture of water and ice. The dielectric constant

of the mixture was calculated from the formula

Smix-1  M mix 1  1 M i Pmix i - 1 (4.27)

c .+2 M pw E+u M . + 2
mix mix mix 1 mix Pi i

where Emix' and E Mmix' Mw and Mi, Pmix' Pw and Pi are the dielectric

constants, masses and densities of the mixture, water and ice respectively.

71 n
0,5-2.0

03l I . Figure 4.19. Dependence of n (1)

,2 I - I 1 \ and K (2) of Ice on Wavelength X

0, -7 \ at t = 100C After [97].

O L , 9 ........
2 4 6810 ,20W0 SO 2m

Formula (4.27) is a special case of Weiner's general equation [140] for

u = 2.

mix - 1 M Pmix E-l 1 M 2  Pmix 2 - 1 (4.28)
mix m 1 2 mi
Emix + u Mmix pl E + u Mmix p2 e2 + u

where subscripts 1 correspond to quantities of the first substance, subscripts
2 to quantities of the second substance, and u is the so-called shape parameter.

K. Wagner [141] showed that relation (4.27) may be used when the first

substance is in a homogeneous mixture in the form of spherical particles.
7 5

751f the particles have a different shape, the u values and other aspects corre-

sponding to this shape may be found in [142, 143].
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A theoretical validation of formula (4.27) in the case where the components /170
of the homogeneous mixture have real values of the dielectric constant was also
given by R. Dichburn [144]. For complex E with Im c i 0, expression (4.27)
was used by K. Gunn and T. East [145], L. Battan and B. Herman [146] and others
in calculations of the reflectivity and attenuation capacity of a melting
spherical ice particle; results thus obtained were in fairly good agreement
with the experimental data.

However, in light of the latest measurements of J. Joss and R. List [147]
and also those of Joss [148], the extension of formula (4.27) to melting ice
particles is somewhat dubious. Nevertheless, D. Atlas [149] notes the useful-
ness of estimates and theoretical results obtained with the aid of relation
(4.27).

M
w

Assuming in expression (4.27) that mix p 1, and denoting M
mix w i mix

by 6w, we obtain

mix = w + ( - 6 ) , (4.29)S + 2 E + 2 w E. + 2 w
mix w 1

where 6w is the relative percentage (by weight) of water in the mixture.

On the basis of formulas (4.29), (4.14), (4.16), (4.23), (4.24) and dielec-

tric constants of ice, n and K of a homogeneous mixture of water and ice at
to = OOC (Figures 4.20, 4.21) and t = -100 C (Table 4.35) were calculated [150].

TABLE 4.35. VALUES OF n AND K OF A HOMOGENEOUS MIXTURE
OF SUPERCOOLED WATER AND ICE FOR t = -100C AND

DIFFERENT 6
w

A=1,24 CM =o 0,65cm= 1,24 cm = 0,62 cm

0,0 1,78 7,9.10-4 1,78 7,9.10-4 0,6 2,95 0,41 - -
0,1 1,92 0,030 - - 0,7 3,28 0,63 - -
0,2 2,07 0,067 2,02 0,11 0,8 3,66 0,99 2,97 1,02
0,3 2,24 0,12 - - 0,9 4,03 1,60 -
0,4 2,44 0,18 - - 1,0 4,15 2,55 3,10 1,77
0,5 2,68 0,28 2,47 0,39

Note: Commas indicate decimal points.

It is evident from Figure 4.20 that the refractive index of the homogeneous

mixture of water and ice at X > 2 cm is practically independent from wavelength.
There is an indefinite maximum of the function n = f(X) for each 6 , and as /171

6 increases, this maximum shifts toward longer wavelengths. At X < 2 cm,

a marked dependence of the refractive index on wavelength is observed, especially
in the millimeter portion of the spectrum 76 .

76Under the assumption that the dielectric constants of ice at a given tempera-
ture are constant over the entire range of X from 0.1 to 20 cm.
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Figure 4.20. n of Homogeneous Water-Ice Mixture For Different Relative
Values (w ) of the Percentage of Water at t = OOC.

It is evident from Figure 4.21 that the absorption index K of a homogeneous
water-ice mixture depends substantially on wavelength and water content of the
mixture. A particularly marked dependence of K on X is observed in the milli-
meter range, and of K on 6w' when 6w > 0.5. Comparison of Figures 4.20 and 4.21

with the data of Table 4.34 shows that the dependence of n and K of the homo-
geneous ice-water mixture on temperature t*C is not very distinct.

Other relations for calculating mixtures of two-phase substances also exist.
Thus, if a mixture consists of two finely dispersed, thoroughly mixed phases, /172
the dielectric constant of the mixture is calculated from Lichtenecker's formula
[151, 152]

lne ix 1n e + (1 - C )1n 2' (4.30)

where xl, x2 are the volume concentrations of the first and second substance in

the mixture.
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Figure 4.21. Variation of K of Homogeneous Water-Ice

Mixture with 6 at t = O0C.
w

For the case of a static two-component mixture in which the particles are

arranged at random, V. I. Odelevskiy [151, 152] proposed the formula:

mix =A / 2 (4.31)

where

A = (3xt - 1) t1 + (32 - 1) E2
4

If, however, a two-component mixture constitutes a matrix system whose first

component uniformly surrounds the elongated inclusions of the second component
distributed through it, then according to Odelevskiy c is found from the formula

mix 2 --x 2  ) (4.32)
3 2 - F1

when x2  1.

In the presence of a low concentration C of the second substance in the /173

first, the following relation is proposed in [153]:

3 (r2-61) E1
emix= 1C 2+ 2 2, (4.32a)

We will also recall the relations used in [11] to calculate the dielectric
constant of seawater, treated as a homogeneous mixture of water and its solutes.

Analysis of individual values of the radar cross-section, calculated on the

basis of dialectric constants cmix from formulas (4.30)-(4.32a) and from

relations of § 1.4 taken from [11], showed that they were in worse agreement with

173



the experimental values than with those determined from formula (4.29). However,
detailed experimental studies of the homogeneous water-ice mixture over a wide
range of X are necessary in order to solve the problem of the best approximation
of Cmix*

We will use expression (4.28) for u = 2 to calculate e of ice and snow of
different densities, treating them as a homogeneous mixture of ice and air.
In this case, equation (4.38) becomes (4.27) if in the latter Mw, pw and E are

taken to mean the mass, density and dielectric constant of air (instead of water)
respectively. If in addition we assume that M 0 and pi 1 g/cm3 , Mix

w i mix
Mi., expression (4.27) will take the form

s. - 1 l . - 1
mix 1

Emix + 2 e + 2 Pmix (4.33)

D. Atlas [137] tested expression (4.33) experimentally and found that it
satisfactorily described the measurement results (to within 7%).

Table 4.36 lists emix values representing Ei of different densities,

calculated from formula (4.33) on the basis of refractive and absorption indices
of ice with a density of 0.916 g/cm3 (Table 4.31). Comparison of the data of
Tables 4.36 and 4.31 shows them to be in completely satisfactory agreement.

TABLE 4.36. VALUES OF n AND K OF ICE, At the same time, if the dielectric /17:
CALCULATED FOR DIFFERENT DENSITIES p constant of wet ice of 0.38 g/cm3 density

AND TEMPERATURES t. is calculated from formula (4.29) (Table
4.37) and compared with the data of

x~,io attoc Table 4.32, one can observe a discrepancyP ,in the absorption indices K of a wet snow
g/cm o -6 - 12 -8 cover and wet ice of the same density.

SI All this obviously applies if expression
0,76 1,55 !4,57 6,65 4,50 3,86 (4.29) correctly reflects the dielectric
0,46 1,31 7,43 3,39 2,29 1,97 properties of wet ice.0,34 1,22 5,21 2,38 1,61 1,38

Treating snow as ice with 10-2-10
- 3

g/cm3 density, we will use formula (4.33) to calculate the dielectric constant
of a snowflake 7 7 (Table 4.38).

77Assuming that a wet snowflake is dielectrically equivalent to a wet snow cover,
its c as a function of the water content may be calculated [154-156] from
formula (4.29) by replacing Ei in the latter by e of snow according to Table
4.38.
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TABLE 4.37. CALCULATED VALUES OF n (IN NUMERATOR) AND /174

K.104 (IN DENOMINATOR) OF WET ICE WITH 0.38 g/cm
3 DENSITY

AS FUNCTIONS OF WAVELENGTH X AND PERCENTAGE p OF WATER
AT OOC.

P%
Xcm

0,4 0,8 1,2 1,6

0,1 1,31 1,32 1,32 1,32

12,6 20,0 27,5 35,0

0,4 1,31 1,32 1,32 1,33
17,6 30,1 42,6 55,2

0,86 1,32 1,32 1,33 1,33

13,4 21,7 30,0 38,3

3,2 1,32 1,32 1,33 1,33

7,7 10,2 12,7. 15,2

11,0 1,32 1,32 1,33 1,33

5,9 6,7 7,4 8,1

17,0 1,32 1,32 1,33 1,33

5,7 6,1 6,6 7,1

TABLE 4.38. VALUES OF n (IN NUMERATOR) AND K<10
4 (IN DE-

NOMINATOR) OF ICE WITH DIFFERENT DENSITIES p AND AT TEM-
PERATURES t.

i C

0 -6 -10 -12 -18

0,03 1,01895 1,01895 1,01895 1,01895 1,01895

0,416 0,190. 0,143 0,129 0,110

0,01 1,00630 1,00630 1,00630 1,00630 1,00630

0,138 0,0631 0,0474 0,0426 0,0356

0,005 1,00315 1,00315 1,00315 1,00315 1,00315

0,0690 0,0135 0,0237 0,0213 0,0182

Note: commas indicate decimql points in above tables
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The data of Table 4.38 indicate a weak dependence of the absorption index

K of snow on temperature at t < -60C and a complete independence from t of its
refractive index.78

7 8Values of the real part of the dielectric constant and loss tangent of freshly
precipitated snow are given in [157] for t = -6*C and X = 3 cm, which in terms
of N gives 1.12-2.36 10-4 i. Comparing this value of N with the data of
Tables 4.31, 4.36, we find that it corresponds to snow with -0.3-0.4 g/cm3

density.
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CHAPTER 5 /176

SCATTERING AND ATTENUATION OF MICRORADIOWAVES
BY ONE HYDROMETEORIC PARTICLE

§ 5.1. Physical Structure and Parameters of a Hydrometeoric Particle.

Hailstone. It is well-known [158, 159] that the most complex representative
of hydrometeors from the standpoint of physical structure and phase state is
a hailstone.

Measurements of hailstone density immediately after precipitation showed
[158, 160] 79 that on the average, for hailstones .3-18 mm in diameter, it ranges
from 0.5-0.9 g/m3 , and for fine hail and graupel amounts to approximately 0.3
g/cm3 .

Frequently, hailstones (particularly the largest ones) consist of 2-.20
nonconcentric layers of ice of different crystal structures and densities
(Figure 5.1, Table 5.1).80

TABLE 5.1. STRUCTURE OF HAILSTONES FALLEN IN DENVER CUSA)

No. of Type of Number of Layers
Hail- Core Fi [7 /

ter(mm) stones

21 9 Dull 9 2 0 2 0 3 0 1 0 I
24 10 Dull 5 2 2 3 1 0 1 1 0 0

Transparent 2
Mixed 2

27 6 Dull 5 o 1 3 0 1 1 0 0 0

Transparent 1 0 0 0 1 1 0 0 0 0
30 2 Dull 1 4 3. 8 2 5 2 2 0 1

otai 27

7 9 See also [313-317].
8 0See also [318-321], the figure on p. 3 and [314].
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The conditions determining the formation of a given ice crystal structure /167
in a hailstone have been discussed in many theoretical and experimental papers
[161-173 and others]. Thus, according to [171-173], the conditions of the
crystallization process and the structure of growing ice are determined by the
critical value h of the parameter h :

cr g

SPvto-t) [ 296 vq7 ,51 (5.1)
g pi LvqE to-t PW )

where p , pi are the densities of water and growing ice, respectively; Xw is

the molar thermoconductivity coefficient of water; t0, t are the temperatures of

stable phase equilibrium and supercooled droplets, respectively; L is the specific
heat of fusion of ice; v is the velocity of the flow of the water aerosol

relative to the hailstone-81 ; q is the water content; E is the average integral
coefficient of capture of the droplets by the hailstone.

The supercritical (dry) regime of hailstone growth is achieved when h > hcr

In this case, the liquid film rapidly disappears, and on reaching the hailstone,
the supercooled droplets will crystallize without forming a continuous and
stable film. The ice thus formed is of comparitively low density (pi < 0.92

g/cm3 ), dull, and inhomogeneous in structure, and the surface of the hailstone
remains virtually dry.

The subscritical ("wet") growth regime is achieved when h < h . In this
g cr

case, the crystallization proceeds under a stable film of water with the forma-
tion of a very dense (pi 0.9 g/cm3 ) transparent ice of homogeneous structure.

The thickness of the liquid film of water on the surface of such wet hailstones
may be calculated from the formula

5, - 106 pLqEc "iRe -

wet 3 2, ( vq 21 ' (5.2)
-ww a to to--t \ Pw ] J

where a is the specific surface tension of water; pd is the dynamic viscosity

of water; R is the Reynolds number for the airflow around the object; a0 is the

relative turbulence intensity in the liquid film, equal to the ratio of the mean

81For a hailstone growing in a cloud, v is equal to the difference of the fall
velocity of the hailstone vh and cloud droplets vd. In most cases vh > vd, so

that v x vh.
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square fluctuation of the velocity to the mean velocity of the water in the film;
cw is the specific heat capacity of water; pa is the air density.

/178

/179

j i

12 4 5

I

Figure 5.1. Central Cross-section of Layered Hailstone.
a, After [161]; b, After [162]; c, After f163]; d, After [164].

In order to determine the magnitude of parameter hcr at which one structure

of growing ice changes to another, observations were made [172] on the icing of
objects in a flow of supercooled water droplets. Results of the experiments /180
are presented in Figure 5.2. The figure shows that when hcr= 0.1 cm, there is

a fairly distinct boundary separating two types of ice: transparent (when h <
g

< 0.1 cm) and dull (h > 0.1 cm) ice. In order to determine the dependence of

the structure of ice on temperature t, liquid water content qE and flow velocity
of the supercooled droplets, the experimental conditions were varied [175] so
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that several layers o'f ice of different structures would successively form on

the object..82. A model of such an artificially grown layered boundary is shown
in Figure 5.3.

r.10 -2
hg

0

o o f
2- , 2

a 3
o A 4

0

A O
go

0 0o, 0,2 0o3 04 o,5 lgCM

Figure 5.2. Structure of Ice During Icing For Different
Values of h and Mean Radius of Aerosol Droplets rm .

g m
1, 3, Laboratory experiments (points with hg > 0.6.cm were

placed on the ordinate h = 0.6 cm); 2,4, Observations in

clouds after [174]; 1,2, Homogeneous transparent ice; 3,4,
Inhomogeneous dull ice.

Layers 1 and 3 were obtained at h = 0.07 cm < hcr, t = -60C, v = 33 m/s,
g cr

qE = 0.5 g/m 3 ; layer 2 - at hg = 0.22 cm > hcr, v = 11 m/s, t = -6C, qE= 0.5

Let us also note that the magnitude of parameter h determines not only the

structure, but also the density of growing ice. This is clearly illustrated in
Figure 5.4, taken from [173]. The analytical form of the function p = f(h g)

is completely satisfactorily approximated by the formula

P a- Po 1 exp (5.3)

where p0 is the limiting density of ice (0.92 g/cm3 ), a = 0.4 cm.

82 As in natural hailstones, shown in Figure 5.1.
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Figure 5.3. Model of Artificially Grown Layered Hail-
stone After [175].
1,3, Transparent ice; 2, Dull ice.

P g/cm o , 2 %

A 0o

-4-

50 5 0 2 g

Figure 5.4. Ice Density Versus h

1, Laboratory experiment; 2, Experiments under natural con-
ditions; 3, Data of [170]; 4, Calculation according to
formula (5.3).

The results obtained were used in a study of the formation of a layered /182
hailstone in thick cumulus clouds. As follows from [176, 177, 179, 180], strong
ascending motions with velocities of 10-20 m/s or greater are observed for
fairly long periods of time in such clouds. Hail nuclei formed as a result of
freezing of the largest cloud droplets [180] rise upward in such a flow, During
their motion, they capture finer cloud droplets and thus grow in size. The

181
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ascent continues until the hailstone reaches the level of the zero isotherm.
Whether such hailstones eventually fall to earth, or whether they are converted

into fine graupel and rain depends in turn on the set of conditions determining
the process of melting of the hail during its fall in the warm part of the cloud
and the subcloud layer of air.

z. k -40 -20 0 TOC

t p(3) b, 0 20MM

2 W

Figure 5.5. Example of Calculation of a Multilayered Hail-
stone Formed In A Cumulus Cloud After [180,181].

The formation of the layered structure of hailstones formed in this manner
takes place if the combination of cloud parameters (T, q, E, pa) and hailstone

parameters (v = f(r, p i)) is such that as the hailstone moves through the

supercooled part of the cloud, the value of hg will go several times through

the critical value h = 0.1 cm.
cr

A specific example of calculation of a multilayered hailstone for typical

parameters of a cumulus cloud is shown in Figure 5.5.

The hailstone of radius b1 considered in Figure 5.5 was formed at a height /18

of 8 km from a large frozen drop (transparent nucleus (5)). This was followed
by growth on the hailstone of dull ice (layer (4)), transparent ice (layer (3)),
dull ice again (layer (2)) and thinnest outer layer (1) of transparent ice.
Such a hailstone is shown schematically in Figure 5.5 on the right. Here t is
the cloud temperature, W is the velocity of ascending motions, qr is the
effective liquid water content in the cumulus cloud, and z is the height.

Above, we discussed the structure of growing hailstones in the course of
their motion in the supercooled part of a cumulus cloud and showed that
depending on the cloud parameters, the hailstone surface may be either dry or
wet.
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Let us consider a melting hailstone. When hailstones fall through cloud
and subcloud layers with a positive temperature, their surface heats up and
thaws. The water formed becomes distributed over the hailstone surface either
in the form of a film of water [149] or in the form of a homogeneous mixture of
water and ice (loose ice). Since the inner structure of thawing hailstones is
formed in the course of their growth in the supercooled part of the cloud, the
new elements in this case in comparison with the case already discussed will be
the structure and dimensions of.the outer shell of the hailstone.

Published data on this question are quite scarce 83 , but even these are
usually very approximate and qualitative in character. Thus, while comparing
the results of measurements with calculations of radar cross-sections after
Mie, D. Atlas [149] found that the maximum thickness of the water film on the
hailstone was 0.01 cm; having performed high-speed filming of an artificial
spherical particle 3 cm in diameter during its melting in a wind tunnel at
blowing speeds of 15-20 m/s, A. Gvelesiani [182] obtained a thickness of the
water shell at its equator of 1.7-1.5 mm.

In addition to hailstones consisting of alternating ice layers of different
densities, either coated with a film of water or completely homogeneous, hollow
hailstones have also been described in the literature [183]. The diameter of
the largest ones reached almost 1 cm. Air is not the only foreign substance in
a hailstone. Thus, the book [184] mentions hailstones whose cores consist of
sand, dust, plant particles, stones, asphalt gravel, etc., as well as hailstones
consisting of snow grains coated with an ice shell or of glassy transparent ice
drops.

The hailstone is more or less spherical in shape. For example, according to
the data of 1,000 observations [158] of hailstones fallen in the course of a
number of years in France, hailstones of a particular shape constitute less than
10% of the total number.

The falling velocities of hailstones of different densities are shown in
Figure 5.6.

Snow Crystal. Many investigators have collected and photographed snow /184
crystals and catalogued them. Particularly well-known in this area has become
the book of W. Bentley and W. Humphreys [185], which contains over 3,000 photo-
micrographs.

However, as was noted by B. Mason [159], this book showed a tendency to
include only crystals of the most regular and well-defined shape. Actually,
an extremely great variety of the shapes of snow crystals is observed [186 and
others]. The following shapes are most frequently distinguished (Figure 5.7):
needles, plane, and spatial dendrites, crystals with nonfrozen droplets, etc.

83
-See for example the survey in [149] and [182].
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The largest linear dimensions are usually exhibited by spatial dendrites. Their
diameter reaches 8-10 mm, and the shape is characterized by a marked branchiness.
The diameters of plane dendrites do not exceed 4-5 mm. Under certain conditions,
coalescence of snow crystals with drops takes place. At sufficiently low
temperature, fine droplets freeze upon striking the surface of the snow crystals,
almost retaining their shape. The snow crystals thus formed are rimed. A
characteristic modification of heavily rimed crystals is grain. Grain is spheri-
cal or conical in shape. Its diameter ranges from fractions of a millimeter to
10-15 mm.

v m/s
V 400 Coalescence of snow crystals leads to

S..40 the formation of flakes. They may reach
10 mm or more in size. Flakes are formed

00 -.- most frequently at an air temperature close
to O0 C. However, cases of precipitation

./ of flakes have also been observed at lower
temperatures, for example, at -20 to -300 C.200

The density of snow crystals and flakes
.~is relatively low and amounts [187-196, 137,

1oo .. - -- 184] to about 10-3-10-2 g/cm3 , in contrast
to snow pellets, whose density is as high
as 0.1-0.2 g/cm3 .

I. 1 2 3 4 5 6 I0 1 2 3 4 5 6 dcm In [193, 196], a dependence of the
Figure 5.6. Falling Velocity density of snow crystals (p g/cm3 ) on their
V of Hailstones of Different diameter (d cm) was found to be
Densities p After [159].

1, p = 0.915 g/cm3 ; 2, p = 0.800 p = 8d - c ,  (5.4)
g/cm3 ;3, p = 0.600 g/cm3 ; 4, p =
= 0.400 g/cnm . where 8 and a are parameters which we

found in [197] by approximating the experi-
mental data of [193, 198]:

B = 0.012; a = 0.73 (5.5)

Empirical dependences of the mass of snow crystals (mg) of different shapes /18.
on their linear dimension (mm) are given in Table 5.2. The falling velocities
of snow crystals of different types and diameters are listed in Figures 5.8-5.10.

A drop of water is a mechanically stable particle, since the surface forces
acting at its boundary continually strive to minimize its surface. If, however,
the surface tension forces are predominant, the shape of the drop corresponds
to the minimum ratio of the surface area to the volume, i.e., it is spherical.
This is observed [159] in the case of cloud drops, drizzle and fine rain drops
(with a diameter under 3-4 mm).
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Figure 5.7. Meteorological Classification
Of Snow Crystals After [186].
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TABLE 5.2. DEPENDENCE OF THE MASS OF SNOW CRYS-
TALS ON THEIR LINEAR DIMENSIONS d AFTER [159]

Crystals Formulas
3

Pellets m = 0,065d 2
Rimed plates and star- m = 0,077d

like dendrites
Snowdust and spatial m = 0,010d

dendrites 2
Plane dendrites m = 0,0038d
Needles m = 0,0029d

Commas indicate decimal points.

Scml/S 6

200

150 - V m/s
2,D .

100-
J2

0 2 40 6dm5 0,5 1n d.d cm

Figure 5.8. Falling Velocities V of Figure 5.9. Falling Velocities V
Snow Crystals vs. Their Linear Dimen- of Rimed Snow Crystals and Fine
sions d After [159]. Rimed Snowflakes vs. Their Linear
1, Plane dendrites; 2, Snow powder; Dimensions d After [159].
3, Spatial dendrites; 4, Needles
5, Cystals with frozen-on droplets; 1, Snowfakes; 2, Simple snow
6, Pellets. crystals.

However, when in addition to the surface forces, other commensurate forces
due to various external factors are acting, the total energy minimum may become
incompatible with the spherical shape of the drop. The literature contains many
pictures from high-speed photography showing that large water drops falling at
a steady velocity have a substantially flattened lower surface and a smooth
round upper surface (Figure 5.11).
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vcm/s These photographs also show that
during their fall, large drops undergo

-----I [199] oscillatory motions along their
2- vertically oriented axis. At the start

S-- of the fall, the drop flattens, and the
flattening continues until the vertical
dimension of the drop amounts to about

- .. __. _ 1/4 of its horizontal dimension. The
S 3 d cm drop then returns to its original shape

Figure 5.10. Falling Velocities V and again becomes round.
of Rimed and Nonrimed Snowflakes
vs. Their Linear Dimensions d The steady falling velocities V
After [159]. in still air of a single water drop of

diameter d at temperature t = 200C,Rimed snowflakes: 1, Vertically
elongated, 2, Horizontally elong- = 1,000 mb and t = 0C, p 900 mb

are shown in Tables 5.3 and 5.4, respec-ated; nonrimed snowflakes: 3, Ver-
tically elongated, 4, Horizontal- tively.
ly elongated.

Figure 5.11. Large Water Drops Falling
At a Steady Velocity After [159]. The
equivalent diameter of the spherical
particle and the measured falling
velocities are equal: 6.5 mm and 8.9
m/s; 6.0 mm and 8.8 m/s; 4.8 mm and
8.3 m/s; 2.8 mm and 6.8 m/s.

In the free atmosphere, v increase somewhat because of its lower density. /188

In studying the fall of drops from great heights, it is necessary.to consid-
er the dependence of the falling velocity on the height. The corresponding nu-
merical data and curves may be found in [204].

As was shown by V. G. Khorguani [205], the falling velocity vs of a collec-

tion of particles differs substantially from v of a single particle. Thus, based
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TABLE 5.3. FALLING VELOCITY OF DROP TABLE 5.4. FALLING VELOCITY OF
AT p = 1,000 mb AND t = 200 C AFTER DROP AT p = 900 mb AND t = O0C

[200-202]. AFTER 159].

dc v cm dcm v CM/ dCm 'Cm/s dm d - m d
cm/s cm/s cm cm/s

0.,004 5 0,20 649 14 898 0,002 1 .06 260 0 ,18 645
0,01 27 0 77 0, 727 0,45 900 0003 3 01 0,07 302 o,201 690
0,02 72 0,25 741 0 48 907 0,004 5 4 0 08 344 0.24 769
0,04 162 10,28 782 0,,50 909 0O006 11.3 10.09 386 0,28 825
0,05 206 0,30 806 0,52 912 0,008 18,3 10. 10 426 0,32 870
0,08 327 0,32 826 0,55 913 0,01 26.5 0, 11 -162 0i40 925

0,10 403 0, 35 853 0,60 914 0,02 76 !0.1 2 493 .0, 8 955
0.12 464 0.36 860 0,65 91- 0.0.3 2 10.14 551 i 056 O70
0,15 540 0,40 883 0,70 914 0.04 172 016 601 4,60 976
0,16 565 0 05 217

Note: ommas indicate decimal_ points.

on results of some 200 laboratory measurements [205], the velocity of a system
of particles of equal size is on the whole greater than the velocity of a
single particle. In particular, if the initial distance between the particle
centers is less than 10 diameters, the velocity vs is 2.5-3 times as high as

v. Other things being equal, as the Reynolds number increases, the velocity of
the collection of particles decreases. For example, when N = 100 and
L
d = 3.18 (N being the number of particles and L, the distance between the parti-

cle centers) for R = 0.0023 vs is 3.2 times the velocity of a single particle

and for R = 0.192, 1.71 times this velocity. Moreover, if the Reynolds number
is constant, as the distance between the particles increases, the falling
velocity of a collection of particles decreases.

Khorguani [205] also cites data showing that for the same distance between
the particles, the velocity vs of a collection consisting of a large number of

L Vs
particles is greater. For example, when = 3.18, N = 100, ~-= 3.20, and

vwhen N 25, - 2.20.

These facts, which require further detailed investigations, must be con-
sidered in calculations of radar characteristics of hydrometeors.

§ 5.2. Effect of Dielectric Constants of a Hydrometeoric Particle On Its /18.
Radar Characteristics.

As was noted in Chapter 4, values of dielectric constants of hydrometeors
obtained by different authors are different.

A particularly marked difference in e is observed for ice (Table 4.33) at
X = 1 to 10 cm. In addition, because of the major advantage involved, many
experimental studies are usually made, not on atmospheric aerosol particles,
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but on models that are dielectrically similar to them. For example, instead of
ice of unit density at t = 0OC (N = 1.78-0.0024i) and X = 1 to 10 cm, uses
frequently made [206] of plexiglas (N = 1.61-0.0025i) etc. [207].

If account is taken of the fact that the radar characteristics considered
are of fluctuating character, it becomes evident that it is necessary to study
the problem formulated in the title of this paragraph.

A computer was used to carry out calculations of the effective areas of
radar 00 (1.276) and total 01 (1.273) scattering, and also attenuation84 02

(1.274) for ice spheres at temperatures of 0 and -100 C. The dielectric constants
were chosen from Table 4.33 after Dunsmuir and Lamb [131] and Cumming [136].
The calculations were performed in accordance with a procedure generally
resembling the one described in [70, 208-213].

Results of the calculations of [214] are listed in Table 5.5, from which
it is evident that the 00 values in the denominator are smaller than the 00
indicated in the numerator by not more than 10% and a = d < 30 and amount to

20-65% when 100 > a > 30. Differences in a1 do not exceed 20% in the entire

range of variation of a. As far as the attenuation is concerned, a marked
difference in dielectric constants does not result in any substantial change
of a2 for a < 100.

It follows from the above that in a theoretical study of the radar scat-
tering of radiowaves by large hailstones, particular attention should be given
to the accuracy of the E values chosen.

In a study of the errors introduced into scattering cross-sections by
dielectrically equivalent models, D. Atlas et al., [206] calculated 00 for N

equal to 1.60 and 1.61 and N = 1.61-0.0025 i (plexiglas) for a from 0.1-100.
For a < 7, the difference between 00 for the N considered is small, and when

7 < a < 20, the overall minimum is essentially the same, and the maximum increases
in the order N = 1.61-0.0025 i; N = 1.60; N = 1.61.

It also follows from the above data that in the region a > 7, the radar
cross-section a0 for the plexiglas sphere is one order of magnitude greater

than for a metal sphere of the same size. This is explained by the focusing
action of the dielectric:sphere: a major part of the incident energy is focused /191
on the reverse side of the sphere and is reflected from it in a narrower beam.

8 With the coefficients defined by expressions (1.288).
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/190

TABLE 5.5. EFFECTIVE AREAS OF RADAR a0 AND TOTAL 01

SCATTERING AND ALSO ATTENUATION 02 OF A HAILSTONE WITH

DIFFERENT DIELECTRIC CONSTANTS.

NOTE. THE NUMERATOR GIVES 00, 01, AND 02 OF HAILSTONES

WITH c TAKEN FROM [131], AND THE DENOMINATOR, WITH e
TAKEN FROM [136].

O -100 C 0 -100 C 0 --10 C

0 7.10-5 7.10-5 5 10-5 5. 10- 5  22. IO-1

7.10-5 7.10-5 5 10-5 5 i0-5 23.10-5

5 13,22 13,78 2,15 2,21 2,21 2,22
12,31 13,41 2,05 2, 17 2,19 2,21

10 10,94 11,46 2,34 2,87 2,39 2,89
10,04 11,11 2,28 2,35 2,40 2,39

15 11,04 11,00 2,49 2,65 2,53 2,71

10,44 11,07 2,34 2,53 2,57 2,66

20 27,02 30,18 2,23 2,29 2,32 2,32

22,09 28,06 2.12 2,25 2,32 2,32

25 24,78 27,38 1,93 2,00 2,05 2,05

21,04 25,45 1,83 1,96 2,06 2,05

30 50, 13 61,42 2,02 2,13 2,17 2, 17

35,84 53,65 1,87 2,05 2,16 2,17

35 43,76 53,91 2,17 2,28 2,32 2,32

30,05 46,99 2,01 2,21 2,31 2,32

40 35,13 42,87 2,01 2,11 2,17 2,16
32.41 37,54 1,86 2,04 2,17 2,17

73,01 98,07 1,92 2,07 2,13 2,14
45.52 80,17 1,74 1,96 2,12 2,13

50 49,87 64,89 1,91 2,04 2,09 2,09

31,04 54,56 1,74 1,95 2,10 2,09

55 45,67 61,74 1,95 2,10 2,17 2,16

27,00 50,49 1,76 2,00 2, 17 2,17

60 73,28 106,74 1,96 2,12 2,19 2,19

38,57 83, 19 1,74 2,01 2, 17 2,19

65 45,60 63.27 1,83 1,97 2,05 2,04
25,50 50,97 1,64 1,87 2,07 2,05

70 50,66 74,50 1.82 2,00 2,02 2,09
24,43 58,00 1,61 1,87 2,09 2,09

75 55,10 .82,84 1,88 2,06 2,14 2,14
26,48 63,39 1,66 1,94 2,14 2,14

Not : Comma indicate decima points.
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TABLE 5.5 CONT'D

0 -- 10, 0 -0 0 C 0 -100 C

80 35,00 46,08 1,85 2.03 2,12 2,12
18,88 38,86 1,62 1,91 2,12 2,12

85 48,86 91,48 1.79 2,00 2,09 2,10
17.96 60,05 1,56 I,85 2,09 2,10

90 37,81 63,14 1,77 1,96 2,06 2,05
15,59 44,98 1,54 1,82 2,07 2,06

95 26,77 - 36.53 1,80 2,01 2,12 2,12
13,72 29,93 1,55 1,96 2,11 2,12

100 40,38 73,29 1,80 2.02 2,13 2,13
13,57 50,35 ' 1,54 1,86 2,12 2,13

Note: Commas indicate decimal points.

Figure 5.12 shows curves of normalized cross-sections of plexiglas and ice
spheres. When a > 20, the curve for ice runs much higher than that for plexi-
glas, although the imaginary parts of the indices of ice and plexiglas prac-
tically coincide, while the real parts differ by not more than 6%.

At the same time, comparison of a0 data for N = 1.78-0.00055 i and
N = 1.78-0.00079 i [216] shows that when the imaginary part of the refractive
index changes by 30-50%, o0 change by not more than 10-20% in the range of

0.1 < a < 100.

The influence of variations of the real refractive index is manifested with
particular clarity when a > 100, as can be seen from Table 5.6, which gives
calculated a0 values for N = 1.6 and N = 1.78. This is due to an increase in

the focusing effect of the sphere as N increases.

TABLE 5.6. EFFECTIVE AREA OF RADAR SCATTERING o0 FOR N = 1.6

AND N = 1.78

2M0 40 600 800 -000

1,6 8,53 14,04 22,12 38,62 29,70
1,78 340,15 377,67 359,59 705,66 992,96

Note: Commas indicate decimal points.

191



a

Ice

t'W Plexigas

-Ii i II !* , I i i J i i i ti l li,

0 5 10 15 20 25 30 50 70 90o

Figure 5.12. Effective Area of Radar Scattering c0 of Spheres With

N = 1.61-0.0025 i (plexiglas) and N = 1.78-0.0024 i (ice at O0C) After
[215].

In [216], in order to study the influence of the imaginary part of the /19
refractive index on the reflecting and attenuating properties of an ice sphere,

-m.
a0, ai,. and ao were calculated for N = 1.78-10 i over a side range of a values

(from 0.01-5,000) and m = 0, 1, ..., 9, m. Results of the calculations are
presented in Tables 5.7-5.9. Analysis of the values of radar cross-section a0
(Table 5.7) shows that if the absorption index K = Im N is smaller than 10-4 ,
its variations have practically no effect on a0 over the entire range considered.

For the indicated (K < 104) imaginary parts of N as a increases, a0 also

increases. Moreover, for a > 5, o0 exceeds not only its asymptotic value, but
(id)also the asymptotic value corresponding to an ideally conducting sphere (a id)

= 1).

If, however, the magnitude of the imaginary part is appreciable, as the
electromagnetic wave passes through the interior of the sphere in both directions,
energy is lost, and the focusing action of the sphere will be insignificant. In
that case, as a increases, a0, while fluctuating, increases slightly at first,
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and reaches a maximum, then begins to decrease, approaching its limiting value

0, The limiting values of o for a += are listed in Table 5.10.

It follows from a comparison of Tables 5.7 and 5.10 that when m > 4, as a
increases over the entire range considered, o00 moves further and further away

from its asymptotic value. When m = 3 and a > 400, a0 begins to approach its

limiting value, but even when a = 800, o00 still exceeds the limiting value by

a factor of 25 and reaches it only when a = 4,000. If, however, K = 10-2, 00
reaches its limiting value when a = 400, and in the case of K = 0.1 to 1, when
a - 10.

Thus, as the imaginary part of the refractive index of the substance of the
sphere increases, a decrease takes place in the maximum value and in the range
of normalized radii of the sphere a at which 00 substantially exceeds its

limiting value.

An examination of£ 1 (Table 5.8) and 02 (Table 5.9) shows that they are

stable at small variations of the imaginary part of N and when a > 5 to 10,
differ very little from their limiting values o (Table 5.10) and o2 = 2.

In contrast to ice, the effective scattering and attenuation areas of
water spheres depend considerably less on the variations of dielectric constants.
To illustrate this statement, 0o, 01, and 02 were calculated for water spheres

with the dialectric constants given in the appendix and obtained by many authors.

Table 5.11 lists the results of such a calculation at X = 1 mm. The numer-
ator gives the 00, al, and 02 values calculated by Ch.-M. Chu [70] at t = 180C

(see Table 4.7), and the denominator, our calculations at t = 200C (the N values
were taken from the appendix). Analysis of Table 5.11 and other such calculations
shows that the error in 00, 01, and 02 values for water spheres are no greater,

and as a rule, much smaller in the percentage ratio than the error of dialectric /198
constants. This fact is also confirmed by comparative calculations of the scat-
tering and attenuation cross-sections for water spheres in the submillimeter
range85 from N values calculated from Debye formulas (4.10), (4.14), (4.23),(4.24) /199

(4.24) andexperimental values (see Table 4.29).

8-It is shown in § 4.1 that in the submillimeter range, the Debye values N pf
water appreciably differ from experimental values.
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TABLE 5.7. DEPENDENCE OF EFFECTIVE RADAR SCATTERING AREA /194

ON VARIATIONS OF THE ABSORPTION INDEX AT N = 1.78 - 10- mi

(Table Continued].

o0,01 I , I I _10 20

0o 7,040694.10-9 7,022653.10-5 0,393789 13,998175 11,666644 31,424563

9 7,040694-10-9 7,022653-10-s 0,393789 13,998174 11,666643 31,424558

8 7.040694-10-9 7,022653.10-5 0,393789 .13,998167 11,666637 31,424518

7 7,040694-10-9 7,022653-10-5 0,393789 13,998097 11,666573 31,424118

6 7,040694.10-9 7,022653-10-5 0,393789 13,997401 11,665935 31,420120

5 7,040694-10-9 7,022653-10-s 0,393785 13,990437 11,659557 31,380156

4 7,040694-10-9 7,022653.10-5 0,393749 13,921093 11,595887 30,982592

3 7,040702-10-9 7,022661.10-5 0,393389 13,256310 10,970410 27,214968

2 7,041872-10-9 7,023801-10-5 0,389894 8,559010 6,020235 6,581344

I 7,159385-10-9 7,140899.10-5 0,364107 0,363425 0,074141 0,074281

0 1,866806.10-8 1,869309.10-4  0,661979 1,360824 0,183873 0,181626

50 I oo I t - 4o _o 00 _

00 71,466744 101,40058 340,15653 377,66503 359,58971 705,65841

9 71,466720 101,40049 340,15588 377,66399 359,58874 705,65298

8 71,466503 101,39965 340,15002 377,65360 359,57995 705,60404

7 71,464333 101,39124 340,09138 377,55070 359,49210 705,11491

6 71,442636 101,30713 339,50558 376,52297 358,61359 700,25313

5 71,226001 100,47038 333,70299 366,37815 349,83193 654,48390
4 69,091988 92,517162 281,06330 280,20713 266,34879 374,16221
3 50,739725 42,114354 60,099522 22,632266 8,387565 2,047032
2 1,976196 0,110814 0,080940 0,078741 0,078735 0,078735
1 0,079938 0,079916 ...

0 0,187972 0,184111 -

Note: Commas indicate decimal points,
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TABLE 5.7 CONT'D

1000 1400 2000 2500 4000 5000

00 992,96487 1231,8001 2310, 9123 2247,4941 -
9
8

7
6 984,90805 1223,2301 2272,7463 2213,3820 3455,0708 5041,13935 915,71182 1104,8761 1959, 9719 1888,8507 2673,2471 3535,51294 453,95785 432,0172 486, 1043 393,4236 202,2790 138,01913 0,305879 0,221216 0,064263 0,080782 0,078733 0,078723

0

Note: Commas ifAdicate decimdl points

TABLE 5.8. DEPENDENCE OF EFFECTIVE TOTAL SCATTERING
AREA al ON VARIATIONS OF THE ABSORPTION INDEX AT

N = 1.78 - 10-mi [TABLE CONTINUED].

o, ata

0,01 0,1 I

co 4,6938347-10-9 4,7066127.10-5 0,50454619
9 4,6939347.10-9 4,7066127-10-5 0,50454619
8 4,6938347-10-9 4,7066127-10-5 0,50454618
7 4,6938352.10-9 4,7066127 10-5 0,50454615
6 4,6938349.10-9 4,7066127-10-5 0,50454585
5 4,6938348-10-9 4,7066127.10-5 0,50454284
4 4,6938348.10-9 4,7066128.10-5 0,50451268
3 4,6938129-10-9 4,7066184.10-5 0,50421207
2 4,6945828-10-9 4,7073822-10-5 0,50129708
1 4, I 1129218-10-9 4,7858265.10-5 0,48072059
0 1,2457884.10-8 1,2518949-10-4 0,79763200

Note: Commas indicate decimal points.
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TABLE 5.8 CONT'D

h at

5 10 20 50 100

oo 2,2286991 2,3873253 2,3203220 2,0865701 .2,1347510
9 2,2286990 2,3873252 2,3203219 2,0865699 2.1347507
8 2.2286983 2,3873248 2,3203210 2,0865683 2,1347470
7 2,2286908 2,3873207 2,3203124 2,0867718 2,1347096

6 2,2286165 2,3872796 2,3202267 2,0863873 2,1343359
5 2,2278729 2,3868681 2,3193699 2,0847443 2,1306091

4 2,2204738 2,3827617 2,3108420 2,0684838 2,0943070

3 2,1499746 2,3424878 2,2295121 1,9216791 .1,8088196
2 1,6826263 2,0093241 1,7022562 1,3089814 1,1984944

1 1,0596653 1,2419140 1,2069719 1,1867928 1,173874

0 1,3608240 1,3537214 1,33331391 1,3037924 1,285181F

or at I

200 soo 1 800 l000

CO 2,0770611 2,0267223 2,0265029 2,0307315 2,0144871

9 2,0770603 2,0267209 2,0265029 2,0307314 -
8 2,0770532 2,0267075 2,0265031 2,0307304
7 2,0769816 2,0265735 2,0265046 2,0307207 -
6 2,0762662 2,0252351 2,0265204 2,0306259 2,0107676

5 2,0681543 2,0119811 2,0266728 2,0298130 1.9781525
4 2,0019509 1,8915074 2,0227130 2,0265866 1,7198765
3 1,5721955 1,3329758 2,0281932 1,1887332 1,1639663
2 1,1625542 1,1529761 2,0278301 1,1464185 -
1- - - - -

0 --

. at a

1400 2000 2500 4000

00 2,0179434 2,0129720 2,0125004 -

8 - - - -

7. - -

6 2,0126347 2,0055278 2,0032023 1,9924124
5 1,9672596 1,9420275 1,9249191 1,8728851
4 1,6382326 1,5304087 1,4613439 1,3187885
3 1,1471467 1,1409606 1,1394354 1,1374306
2 - -
I - --

0 -

Note: Commas indicate decimal points.
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TABLE 5.9. DEPENDENCE OF EFFECTIVE ATTENUATION SCATTERING
CROSS-SECTIONS ON VARIATIONS OF THE OBSORPTION INDEX AT N =

= 1.78 - 1 0-mi [Table Continued].

a' at /197

-0,01 0,1 1

00 4,6937397-10-9 4,7066127.10-5 ' 0,50454619
9 4,6943406-10-9 4,7066132-10-5 0,50454619
8 4,6988941 10-9 4,7000877-10-5 0,50454621
7 6,6261296.10-6 4,7033222-10-5 0,50454645
6 4,8432443.10-6 4,7253404-10-5 0,50454883
5 2,7422255.10-6 4,8680731.10-5 0,50457259
4 1,7715668.10-6 6,3057273-10-5 .0,50481021
3 2,3082940.10-6 2,0831996-10-4 0,50718597
2 1,5619941 10-4 1,6599668.10-3 0,53089276
1 1,5979343. 10-3 1,6162411-10-2 0,76252767
0 1,4218939.10-2 0,1438572 2,44995763

o2at

5 10 20 50 00

oo 2;2286991 2,3873253 2,3203220 2,0865701 2,1347511
9 2,2286991. 2,3873253 2,3203220 2,0865701 2,1347511
8 2,2286989 2,3873253 2,3203220 2,0865702 2,1334751
7 2,2286971 2,3873257 2,3203222 2,0865708 2,1334750
6 2,2286790 2,3873296 2,3203238 2,0865775 2,1334743
5 2,2284981 2,387-3685 2,3203406 2,0866442 2,1346648
4 2,2266995 2,3877569 2,3205023 2,0873091 2,1338914
3 2,2096757 3,3915427 2,3216524 2,0936183 2,1263554
2 2,1095440 2,4120246 2,3092534 2,1258394 2,0958077
1 2,3299283 2,4020065 2,1424445 2,1424445 2,0906061
0 2,6212837 2,4238180 2,2798120 2,1563632 2,0989855

M at - /198
200 400 600 800 1 .,

00 2,0770611 2,0267223 2,0265029 2,0307315 2.0144871
9 2,0770611 2,0267224 2,0265006 2,0307282
8 2,0770612 2,0267226 2,0264803 2,0306990
7 2,0770621 2,0267244 2,0262771 2,0304065
6 2,0770715. 2,0267433 2,0242483 2,0274974 2.0145314
5 2,0771591 2,0269262 ,0042829 1,9997115 2.0148888
4 2,0775849 2,0280425 1 8319596 1,78Q9362 2.0164554
3 2,0715164 2,0321867 1,2358388 2,0237459 2.0192774
2 2,0578246 2,0363919 1,1489006 2,0229994
I - -- -

0 - - - -

Commas indicate decimal points.
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TABLE 5.9 CONT"D

s at a

1410 2000 2500 4W,)

2,0179434 2,0129720 2,0125004 -

8 - - -

7 . - -

6 2,0180527 2,0130127 2,0125667 2.0071557
5 2,0179827 2,0131387 2,0124628 2.0072355
4 2,0171970 2,0130490 2,0117670 2.0075523
3 2,0159656 2,0125312 2,0108014 2.0078930

Commas indicate decimal points.

TABLE 5.10. LIMITING VALUES OF EFFECTIVE AREA RADAR a* /1990 -
AND TOTAL a* SCATTERING FOR N = 1.78 - 10 -mi AT m = 0,

1, ... , 9, 0.

mT I I i m o

ao 0,078722 1,079 4 0,078722 1,079
9 0,078722 1,079 3 0,078722 1,079
8 0,078722 1,079 2 0,078735 1,079
7 0,078722 1,079 1 0,078578 1,080
6 0,078722 1,079 0 0,184272 1,184
5 0,078722

Commas indicate decimal points.

Table 5.12 also lists data for X = 500 pm. It is obvious that although.

the difference in the imaginary parts of N is substantial (three-fold), the

a0 and a2 values calculated from the Debye and experimental N values differ from

one another by not more than 30%. Moreover, the magnitude of the indicated

error also includes the error due to the difference in the temperatures con-

sidered. The error in calculations of a0 and a2 from the Debye values of N

at X = 0.03 cm is slightly greater.

Let us consider the influence of errors in the determination of the dial-

ectric constants of snow on its scattering and attenuation cross-sections.

198



TABLE 5.11. EFFECTIVE AREAS OF RADAR o0 AND TOTAL 01 SCATTERING AND

ATTENUATION 02 OF ELECTROMAGNETIC WAVE OF 01. cm LENGTH BY A WATER

SPHERE AT N = 2.58 - 0.95 i (IN THE NUMERATOR) AND N = 2.53 - 0.82 i
(IN THE DENOMINATOR)

0,1 2,2 -10-1 1,5. 10-4 0,070
2,1 . 10- 4  1,4. 10-4 0,061

0,3 0.018 0,013 0,260
0.017 0,013 0,239

0,7 0,477 0,433. 1,444
0,413 0,402 1,320

1,0 1,021 1,378 3,128
.0,905 1,343 3,048

2,0 0,473 1,459 3,024
0,466 1,450 3,049

3,0 0,213 1,443 2,808
0.207 1,411 2,803

4,0 0.161 1,436 2,690
0,152 1,412 2,688

5.0 0,195 1,428 2,608
0. 182 1,405 2,605

Note: Commas indicate decimal points.

TABLE 5.12. EFFECTIVE AREAS OF RADAR SCATTERING 00 AND ATTENUATION 02 OF AN

ELECTROMAGNETIC WAVE OF 500 um LENGTH BY WATER VAPOR WITH CALCULATED (DEBYE)
AND EXPERIMENTAL [118] N VALUES FOR WATER.

d j ad } * o

0,01 0,221 0,624 0,10 0,151 2,526
0,259 0-§ 0,172 2,532

0,03 0,209 3,472 0,25 0,178 2,297
0,202 3,177 0,204- 2,308

0,07 0,199 2,660 0,45 0,181 2,206
0,269 2,656 0,209 2,215

Note. The calculated values (in the numerator) were determined at t = 20 0 C (N =
= 2.36 - 0.26 i), and the experimental values (in the denominator), at t = 250C
(N = 2.409 - 0.74 i). Commas indicate decimal points.
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Figure 5.13 illustrates the influence of the imaginary part of N on the

a0 and a2 values. The values of the refractive index chosen here are close /200

(with an error of less than 0.6%) to N of snow (see Table 4.38) at t = OOC for

densities of 0.005 and 0.01 g/cm 3 . It would seem that such,a small error in N

should have practically no effect on the scattering and attenuating cross-

section. However, as we will see below, the functions 0 = f(N, a) and 2 =

= 4(N, a) are unstable relative to small variations of Ren when N is close to

unity in absolute value. Thus, it is evident from Figure 5.13 that a twofold /201
decrease in Im N at constant Ren leads to an increase in a0 and a2 values by
not more than a factor of 5 and 2, respectively.

00 02

10"'- 10

10- 10

-10'
10 *  ------

-2
---- 3

10'
0 2 3 4 5 6 1 8 9 a

Figure 5.13. Effective Areas of Radar Scattering a00 (1, 2)

and Attenuation a2 (3, 4) of a Spherical Snow Crystal with

N = 1.00-0.969 - 10- 4 i (1, 3) and N = 1.00-0.14 * 10- 4 i
(2, 4) vs. a.

At the same time, if the real part of N is changed by only 2%, the magni-
tude of the imaginary part being practically the same, the final a0 and a2
values will differ very greatly (Table 5.13).

TABLE 5.13. CROSS-SECTIONS OF RADAR SCATTERING o0 AND ATTENUATION 02
OF A SNOW CRYSTAL FOR DIFFERENT a

o, at N ,, atN

1,00-0,14. 10
- 4 

I 1,02-0,19-10
- 4 

1 1,00-0,14. 10-
4 

1 1,02-0.19 10" I

0,1 3,45. 10-14 7,01 • 10-8 3,71 • 10-6 4,97 10-6
0,5 1,78 -10-11 3,62 10-5 1,86 . 10-5 5,21 - 1- 5

1,0 1,16. 10-10o 3,05. 10-4 3,73. 10-5 3,77 10-4

3,0 1,99 10-10 4,43. 10-4 1,12. 10-4 6,08 IO-3
6,0 1,55. 10-10 3,70. 10-4 2,24. 10-4 2,76 10-2
8,0 1,73. 10-1o 2,52. 10- 4  2,99. 10-4 5,02 10-2

10,0 2,57. 10-11 2,09. 10-6 3,73. 10-4 7,91 . 10-2

Note: Commas indicate decimal points.
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The mechanism of such a strong dependence of the scattering and attenuation
cross-sections on a slight variation of the real part of the complex index N of
low density snow can best be followed in the Rayleigh approximation. Thus, at
a sufficiently small a

co 4[ N2-1 2 M4 .
a=4 N2+ 2 (5.6)

We will consider two basic cases corresponding to the dielectric constants
of snow of 10-2 -10-3 g/cm3 density (see Table 4.38): N = 1 - it and N = (1 + 6) -
-. i, where 1 > 6 > 5, and E has the order of magnitude 10-5-10 -6 . Then, sub-
stituting the expressions for N into formula (5.6) and neglecting quantities of
second-order or smallness in comparison with the first, we will have

for N =1 -- = -i9 E2, (5.7)

for N= (1 +8) - i = -- 2. (5.8)

We now set = 10-6 and 6 = 10- 3 . As follows from expressions (5.7), (5.8),
a 0.1% error in N leads to a decrease in a0 by six orders of magnitude. Comparing

two other cases 6 = 61 and 6 = 62, i.e., when R N - 1, we obtain a ratio of the

corresponding a0 values equal to -2) 2

Thus, if 61 = 10-3 ,and 62 = 6 . 10-3 (the error in N is 0.6%), the radar /202

scattering cross-sections differ by a factor of 36.

The cross-sections of total scattering al and attenuation a2 are similarly

treated. We will note here that since for a2 the indicated instability takes

place at somewhat larger values of a than for a0 , it is necessary to consider

the first few terms.

§ 5.3. Scattering and Attenuation of Microradiowaves by a Homogeneous
Hydrometeoric Particle.

Hailstone. The first rigorous calculations after Mie of the effective areas
of radar scattering a0 and attenuation a2 of centimeter electromagnetic waves

by homogeneous ice spheres at a < 4 were performed by J. Ryde 86 . Later, in
connection with R. Donaldson's study [217], who noted a comparitively high
reflectivity of hail by means of a 3.2 cm radar unit, B. Herman and L. Battan
[210, 218] performed more detailed calculations of a0 and 02 of homogeneous

86A survey of papers in which the calculations were performed in the Rayleigh
approximation may be found in [145, 64, 114].
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ice spheres of 1 g/cm3 density at t = OOC for a from 0.1 to 500. Results of

these calculations, which were in good agreement with the experimental data

[219, 220, etc.], led to one of the key conclusions of radiometeorology: the

scattering by dry ice spheres whose size is not smaller than the wavelength is

approximately one order of magnitude greater than the scattering by spherical
water drops of the same radius. This fact was experimentally and theoretically
demonstrated in [215, 221].

Data on further studies along these lines may be found in the comprehensive

survey of D. Atlas [149]. Here, however, we will consider exclusively questions

that were not dealt with in the above mentioned works.

Accurate diffraction formulas were used to calculate 00, 01 and 02 of

homogeneous ice spheres of 1 g/cm3 density at temperatures 87 from 0 to -500C

and a from 0.1 to 100. Figures 5.14-5.16 show the ag, a1 and 02 curves plotted

on the basis of the results of these calculations for t = 0
0 C.

The 00, 01 and 02 curves at other temperatures may be found in [214, 11].

Since the dielectric constants of ice in the lower portion of the centimeter

range are independent of wavelength, by assuming X equal to n and replacing a
by d cm in Figures 5.14-5.16, we will obtain the scattering and attenuation

cross-section curves at 3.14 cm wavelength as functions of hailstone diameter

at OOC.

Analysis of the temperature dependence of a0 shows that at all a, a tem-

perature below -300 C has practically no effect on the a0 values. The temper-

ature correction applied to a0 at a < 10 and t < -30C does not exceed 25%. /204

Hence, for small a and any temperature one can use with a sufficient degree of

accuracy the g0 values obtained at O0C. At large a, the temperature change in

the range from 0 to -300C may lead to a two-threefold increase or decrease in

the radar scattering cross-section.

The total scattering cross-section a1 at all a is found in the range of

10-20% of c1 at t = 00C and for a < 25, the dependence of a1 on temperature may

be neglected altogether.

For all a < 100, the effective attenuation area 02 is independent of tem-

perature with an accuracy of less than 4%.

87 The dielectric constants of ice were selected from Table 4.33, the data of
W. Cumming [136] being used at 0, -10 and -200 C, and the values given by
D. Lamb and A. Turney [35] being used at -30, -40, and -500 C.
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30

20

10 20 30 40 50 60 70 a

Figure 5.14. Effective Area of Radar Scattering o0 of a

Spherical Hailstone of Unit Density at t = 00 C.

5 -

10 20 30 40 50 60 co

Figure 5.15. Effective Area of Total Scattering 01 of a

Hailstone of Unit Density at t =. 0C.
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2

ro 20 30 40 50 60oc

Figure 5.16. Effective Attenuation Area 02 of Spherical

Hailstones of Unit Density t = OOC.

Analysis of radar scattering and attenuation cross-sections for hailstones
with density p of less than unity (Figures 5.17-5.19) shows that as the density
decreases, the temperature -dependences of a0 and 02 become still weaker. Thus,

at a < 13 (Figure 5.17), a greater a0 corresponds to a hailstone of higher

density. For a > 13, a hailstone of 0.380 g/cm3 density reflects back 1.2-5
times as much energy as a hailstone of 0.600 g/cm3 density, a0 of both hailstones

being 5-10 times smaller than a0 of a hailstone with p = 0.916 g/cm3 . Thus,

over the entire segment of variation of a under consideration, the effective
area of radar scattering depends substantially on density.

Since the character of the dependences of 01 and-a2 on p (Figures 5.18,

5.19) is complex, we will consider the function of a2" It is apparent that the /206

effect of density p on the values of the effective attenuation area is somewhat
less distinct than on a0, particularly at a > '10, where the 02 values of

hailstones with densities of 0.600 g/cm3 and 0.380 g/cm3 may be considered
equal to within 7-8%. At p = 0. 916 g/cm3 , 02 differs by less than 30% from
the a2 at the remaining densities in this range. At a < 3.4, a monotonic

dependence of 02 on p occurs: to a lower density there corresponds a smaller

a2' A fairly substantial influence of p on the magnitude of 02 is observed at

these values of a. For example, at a = 2.4, the corresponding a2 values for

densities of 0.916, 0.600, and 0.380 g/cm3 are 4.901, 2.340, and 0.996.
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Figure 5.17. Effective Area of Radar Scatter a0 of a

Spherical Hailstone Having Varying Density with t' = OOC.

3
- 0,916 g/cm

0,380

/ 0.600

1 /

3 7 11 15 9

Figure 5.18. Effect Area of Total Scatter al of a Spherical

Hailstone Having Varying Density with t - OOC.
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Figure 5.19. Effective Attenuation Area 02 of Spherical

Hailstones of DifferentDensities at t = OOC.

As is evident from Figure 5.19, for 3.4 < a < 10, the dependence of 02 on p

has a more complex variable character.

Analysis of calculated values of the scattering and attenuation cross-

-sections of a hailstone as functions of its radius b1 at different X shows

that for a hailstone smaller than 4.6 cm in diameter, the dependence of a0 on X

in the 0.86-17 cm range decreases monotonically 88. If, however, its size is

no greater than 6.0 cm and no smaller than 4.6 cm, this property is preserved

only at X = 0.86 to 11 cm. For the effective attenuation area 02 , the mono-

tonicity condition of the function 02 = f(X) with XC[0.86, 17 cm] takes place

when the hailstone diameter is under 1 cm. When d > 1 cm, an oscillatory

character of the dependence of 02 on X is observed. Let us also note that the /207

shape of the curve 01 = 4(X) in the range X = 0.86 to 17 cm practically duplicates

the function a2 = f(X).

Figures 5.20 and 5.21 show ao and 02 curves of a wet hailstone (snow grain)

of 0.38 g/cm3 density. The calculations were made by taking into account model

8 81t is assumed that the dielectric constants of ice in the range X = 0.86 to
17 cm are the same as at X = 1 to 10 cm.
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representations of dielectric constants (see § 4.2) on the basis of the
experimental data of Table 4.32.

It is evident from Figure 5.20 that for a < 10, the differences in a0 at

different values of the percentage (p) of water in the hailstone are not
substantial. For a > 10 and in the presence of 1.6% of water in the hailstone,
the radar scattering cross-section decreases by a factor of 1.8-3. The atten-
uation cross-sections of the wet hailstone a2 at p < 1.6% and all a < 20

(Figure 5.21) are practically the same as the a2 values for a dry hailstone of

the same density.

(30

3 II
I II

-111.11 1 1

4 8 12 16 20o

Figure 5.20. Effective Radar Scattering Area a0
of Wet Hailstone of 0.380 g/cm3 Density For Dif-
ferent Contents of Water (p), t = O0C, X = 3.2 cm.

1, p = 0.0%; 2, p = 1.0%; 3, p = 1.6%.

Snow Crystal. In § 5.2 it was shown that variations in the dielectric
constants of snow (see Table 4.38) of 10 - 2 -10 - 3 g/cm3 density in the range of
1% cause very significant changes in scattering and attenuation cross-sections.
Since the N values themselves in Table 4.38 were obtained by calculation, on
the basis of the concepts of § 4.2 [see formulas (4.27), (4.28), (4.33)] which
agreed to within 7% with experimental studies [137], they can hardly be used
in calculations of 00, 0l, and a2.

It is necessary to perform careful measurements of N of .snow, particularly
of its real part, as a function of density and wavelength, before the above
mentioned calculations are possible.89

89The aforesaid should be fully applied to the results of [322, 197, etc.].
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Water Drop. During the period 1940-1954, calculations after Mie were
performed to determine the effective areas of scattering and attenuation of
centimeter and millimeter electromagnetic radiation [64, 145, 70]90 by a spherical/208

water drop with a size a = not exceeding9 1 five.

Later, calculations were also performed [222 etc.] for a > 5 by means of
computers and programs for the calculation of hailstones.

J. R. Gerhardt et al. [219-220] found that the calculated and experimental
a0 values of water drops in the centimeter and millimeter ranges of X were in

good agreement.

3

2

--- 21- . -- 2
-3

4 8 12 "6 20a

Figure 5.21. Effective Attenuation Area a2 of a Wet

Hailstone of 0.380 g/cm3 Density For Different Water
Contents p. t = O0C, X-= 3.2 cm.
1, p = 0.0%; 2, p = 1,0%; 3, p = 1.6%.

Referring to various appendices, we use formulas (1.276), (1.273), and
(1.274) to calculate 0A', a and a2 of water spheres of different sizes at

different temperatures and X of microwave and submillimeter range. The dielectric;
constants of water for X > 0.08 cm at the corresponding temperatures were chosen
from the appendix, and for X < 0.08 cm, from Tables 4.29, 4.24.

90°Detailed surveys of such studies are given in [64],[145].
91'The first calculations of this kind in this country were made by 0. Ya. Usikov,

V. L. German, and I. Kh. Vakser [95].
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Thus, Figure 5.22 shows '0, C1 and a2 curves for different a, but for

fixed values of temperature and wavelength. It is evident that the radar
scattering curve is definitely more oscillatory in character than the a1 and

a2 curves. AS a increases, all the curves tend to their limiting values [11].

Figures 5.23 and 5.24 illustrate the temperature dependence of a0 and a2. /209

Analysis shows that a0 of a water drop with temperature tOC 4iffers from a0
of a drop with t = 200C by not more than 20-40%. Under the same conditions,
the a2 values differ by less than 5%. Moreover, as the wavelength decreases,

the temperature dependence of the scattering and attenuation cross-sections
a.

diminishes, and in the submilimeter range we can assume that 1 - 0, i = 0, 1,

2. The observed temperature variations of:the radar characteristics of a water
drop are a direct consequence of the character of the temperature dependence
of the complex refractive index (4.13) (see Figures 4.11, 4.12).

6

G,.

I

4 : .. 8 12 16 20 ai

Figure 5.22 Effective Areas of Radar g0 and Total a1

Scattering and Attenuation a2 of a Spherical Water

Drop'At t = 100C and X = 1 mm.

The effect of wavelength X on the cross-sections of radar scattering a0
and attenuation 02 of a water drop of different normalized sizes is clearly
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evident from the curves of Figures 5.25 and 5.26. Thus, in the centimeter
range the dependence of a0 and a2 on X is weakly manifested, but this cannot

in general be said for the millimeter rangeand certainly not for the

submillimeter range.

The various aspects of radar characteristics for limiting cases of "small"
and "large" water drops have been discussed in detail in [45, 81, 145, 125,
70, 222-228, 64, 114, etc.], and are therefore omitted here.

S) 1-0C, 2) t-2rc, 3) t-5 C.

1,5

0S - .i : : : ,* . .l:

0
0,2 0,4 0,6 o0 d cm

Figure.5.23. Effective Radar Scattering Area a0 of a /21C

Water Drop at X = 0.2 cm at Different Temperatures.
1, t = OOC; 2, t = 200 C; 3, t = 500C.

§ 5.4. Scattering and Attenuation of Microwaves by a Layered Hailstone /212

The radar characteristics of hailstones, representing homogeneous ice
spheres, with different dielectric properties and temperatures, are discussed
in the preceding section. However, as was noted in § 5.1, a natural
hailstone is a layered substance, generally with a nonconcentric arrangement
of layers of different densities. In the approximation of a spherical two-layer
hailstone (see Figure 1.6) and a spherical nonconcentrically layered (see
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Figure 1.4) three-layer hailstone, these characteristics were partially
studied by the author [227, 12].

3,3 a m

3.1f

2,9 ,

2,7

2 J.0
3 I

2,0.1 0.3 05 7 Ov d cm. . O 4 . cm

Figure 5.24. Effective Attenuation Figure 5.25. Dependence of o0  /211
Area c2 of a Water Drop at X = 4 mm of a Water Drop at t 200C on
at Different Temperatures, 1, X at Different a.
t = OOC; 2, t = 200C; 3, t = 500C.

Figure 5.26. Dependence of a2 of

3.2 Water Drop at t = 200 C on X at
Different a.

3.0

2.8 .1 .0 Below, in addition to two-layer
particles, a much broader representa-

2.6 tion will be given to studies
S 3.pertaining to the scattering and

2u t F~ attenuation of microwaves by multi-

.2 layered hailstones with the actual
arrangement and dimensions of the

0z0 layers.

.8- We begin with the two-layer
hailstone. We introduce the

a.6 following symbols (see Figure 1.6):

P2 - density of core (spherical
0.3 , 0 .5 c inclusion) in g/cm'; p - density of

shell (region inside the particle and
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external to its inclusion) in g/cm 3; b2 - radius of core in cm; bl - radius

of particle in cm; .hsh = bl -- b2 --thickness of shell in cm; p - density of

homogeneous spherical hailstone of radius bl; v 1- ; X - wavelength of

the lower and a part of the centimeter range.

Calculations were performed for the effective areas of radar scattering
a0 and attenuation a2 of microwaves

9 2by a two-layer hailstone by using the

exact diffraction formulas 1.276 and 1.274 as functions of v, taking into
account the symbols (1.281-1.283), for different dombinations of layer
densities from 0.380 to 0.916 g/cm3 and ratios of their dimensions b2, and

b1
using the dielectric constants from Table 4.31 and t = O0 C.

Layered Hailstone with pl < p2. Cases of the following density

combinations are considered: p2 = 0.916 g/cm , pl = 0.600 g/cm 3; p2 = 0.916
3 3 3 3

g/cm , p1 = 0.380 g/cm ; p2 = 0.600 g/cm , p1  0.380 g/cm ; and ratios

b2 : 0.00; 0.05' 0.10' 0.25; 0.50; 0.80; 0.90; 0.96; 1.00, values of b2 equal

1 b
to 0.00 and 1.00 being deferred to the limiting cases of a homogeneous sphere
of radius b1 with p = pl and p = p2 respectively.

Table 5.14 lists values. of o0' and Table 5.15, a0 at hsh equal to 0.00 bl;

0.04 bl; 0.10 bl for all three pairs of densities. It is of this that for

v < 1, softening of the hailstone from the outside, i.e., the appearance on /21

the hailstone of the layer.with hsh < 0.1 bl softer than the core has

practically no effect on a0. Similar conclusion can also be reached with

regard to 02. However, as follows'from Table 5.15, this conclusion will apply

with an accuracy of 20-30% for all.v.

3
p2 = 0.916 g/cm ; p1 = 0.600 g/cm ., For v > 1i, the shell of thickness of

0.04 bl substantially decreases a0, particularly for large v (15 < v < 30),

where the radar cross-section values amount to approximately 1/3 of a0 of the

homogeneous hailstone with p = 0.916 g/cm 3 . At v > 40, their leveling takes

9 2According to § 4.2, the dielectric constants of ice in the centimeter range
are practically independent of wavelength. Assuming that the same values of
the dielectric constants will hold in the milimeter region of change of X,
these results will also apply to this range of A.
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place to a certain extent around their asymptotic values (v - a), which,, as
shown by calculations, differ only slightly. A further enlargement
of the shell to hsh = 0.10 b1 results in a sharper decrease of a0 for

1 < v < 11 with further oscillation about its limiting value. Starting at
v > 50, the a0 curve becomes stable, and at v > 80 it occupies an intermediate

position between the curves with b2 equal to 0.96 and 1.00.. r
b1

The character of the behavior of radar scattering as a function of the
growth of the shell to sizes 0.2 b1 and 0.5 bl, i.e., for a comparatively

large and less dense layer of the shell for v < 10 is evident from Figure 5.27.
Thus, for v < 3.0, the difference in a0 of the two-layer hailstone with

b2 equal to 0.8 and 0.5, and a homogeneous hailstone with p - 0.600 g/cm3  /216
-- 0

1
is slight. At 3 < v < 9, as hsh grows from 0.2 to 0.5 bl, o0 has a tendency to

increase and approaches the corresponding values of a0 of the homogeneous

hailstone with p = 0.916 g/cm . Results of calculations for 9 < v < 15.5
show that the a0 curve of the hailstone'with b2 = 0.8 fluctuates around values

b
3

corresponding to the hailstone with p = 0.916 g/cm , and in some intervals
substantially exceeds them. This apparently accounts for the fact that in
many cases the magnitude of radar reflection observed by various authors
considerably exceeds the theoretically calculated magnitude for a spectrum of
homogeneous hailstones with p = 1 g/cm 3 .

It follows from an analysis of the a0 curves of hailstones with 2 = 0.50
b
1

that for 10 < v < 15.5, a0 slightly oscillates around the curve for the

homogeneous hailstone. It may be assumed, therefore, that for these v, the
hailstone with a shell of the order of 0.5 bI behaves as a homogeneous

hailstone whose density is equal to that of the shell.
b2

At v > 15.5, the function a0 corresponding to the case = 0.8 decreases
3

sharply in comparison with a0 for p = 0.916 g/cm , approaching closer to
b 3

a0 for 2 = 0.5 and p = 0.600 g/cm , and at v > 18, the a0 values of the curve

with b2 equal to 0.8 and 0.5 already differ little from the asymptotic

values.
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TABLE 5.14. VALUES OF TO OF A TWO-LAYER HAILSTONE FOR DIFFERENT /21

COMBINATIONS OF DENSITIES OF THE CORE (p2) AND SHELL (pl) AT b2 = 0.90,
b1

0.96, AND 1.00, t = OOC.

313 3 3
p,=0,916 g/cm p,=o,916g/cm , ,=o,600g/cm , =og/cm p,=,380o,g/cm .p,= o,600g/cm p=0o,916 p=o0,6X p= o0,380
p,=O,6o g/cm 3  Pl=0.380g/cm 3 p,=0o,~sg/cm 3 P,=, 600g/cmn p,=o=9o6g/cm 3  ,= o,916 g/cm3 g/cm3 g/cm3 g/cm 3

II II II [ I I II i i II iit 1i I f ii ii

0,1 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,3 0,005 0,005 0,004 0,005 0,002 0,003 0,001 0,001 0,002 0,002 0,003 0,003 0.006 0,002 0,001
0,5 0,035 0,038 0,031 0,037 0,016 0,018 0,010 0,009 0,014 0,011 0,024 0,021 0,041 0,019 0,008
0,8 0,196 0,211 0,175 0,202 0,087 0,095 0,051 0,045 0,068 0,051 0,121 0,109 0,221 0,102 0,041
1,0 0,369 0,385 0,339 0,374 0,165 0,178 0,090 0,081 0,110 0,088 0,209 0,195 0,393 0,186 0,075
3,0 1,810 3,100 1,278 2,749 0,279 0,410 0,134 0,078 0,652 0,154 1,474 0,810 0,840 0,524 0,078
5,0 3,468 4,676 5,254 4,174 0,549 1,233 0,160 0,227 1,535 0,238 5,044 4,199 12,375 2,120 0,336
8,0 0,511 4,227 3,138 4,544 0,861 1,191 1,309 0,208 10,108 1,286 5,403 7,907 11,047 4,404 0,151
10,0 1,429 7,802 2,251 7,970 2,640 3,050 7,714 1,396 5,432 7,371 0,312 8,420 10,105 1,666 0,354
13,0 5,725 7,708 0,668 13,602 0,760 1,890 9,167 7,428 2,966 2,635 1,411 0,431 8,915 0,534 1,106
15,0 0,863 7,035 0,479 14,518 6,550 1,080 4,183 4,366 0,038 3,428 0,088 0,636 10,504 0,277 2,836
18,0 11,046 8,210 3,345 6,728 1,491 0,146 3,480 2,083 1,311 1,743 1,214 4,197 26,693 0,128 0,076
20,0 19,323 7,327 7,975 0,960 0,358 0,155 0,412 8,049 0,208 3,774 1,913 2,872 22,431 2,501 3,37623,0 19,446 7,938 14,052 4,112 1,726 0,015 0,040 7,006 2,708 0,296 2,509 6,533 20,112 3,898 2,411
25,0 22,812 8,133 17,602 4,312 0,464 1,624 0,073 0,770 2,841 5,587 2,709 4,514 21,328 0,630 2,451
28,0 31,104 5,666 18,733 6,933 2,674 1,548 0,338 1,643 7,532 1,038 1,455 3,546 27,318 1,281 0,240
30,0 17,404 6,728 16,460 1,297 0,677 0,137 0,372 0,171 1,48, 4,217 0,384 0,756 36,711 0,607 0,050
40,0 10,482 18,926 3,626 1,425 0,678 1,452 0,497 0,618 0,156 2,967 1,371 0,156 25,616 0,151 0,308
50,0 32,732 28,052 16,099 1,3221 0,126 0,152 0,865 0,402 1,429 2,332 21560 0,233 32,159 0,690 0,533

Commas indicate decimal points.

Go

Figure 5.27. Effective Area
II - of Radar Scatter 60 of

Homogeneous Hailstones Having
S-3 I I A Density of 0.916 g/cm3 (1)10 -- o- 4 I and 0.600 g/cm 3 (2) and A

"I ,Bilayer Hailstone Having A

SLayer Density of p2 = 0.916

u g/cm 3, p = 0.600 g/cm3 When
I o U b b

2 0.5 (3) and 2 = 0.8 (4).

bI  bI

0 0 I L2

2 4 6 8 IO v
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TABLE 5.15. VALUES OF o0 OF A TWO-LAYER HAILSTONE FOR DIFFERENT /214

COMBINATIONS OF DENSITIES OF THE CORE (p2) AND SHELL (p ) AT b 2 = 0.90, 0.96

AND 1.00, t = OOC. b1

,=o,916g/cm, ,=o,g/cm3. P,=o,0oog/cm, p.=0,380g/cm3 . =,=o,sog/cm , P.o,oog/cm p=o,96 p=o,Po p=o,a38o
P,=o0,6g/cm p,=o,asog/cm 8 

P,=o,38g/cm P,= 0,6g/cm P,=0,916g/Cm Pr=0,916g/cm3 g/cm g/cm g/cm

0,1 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
0,3 0,004 0,005 0,004 0,005 0,002 0,002 0,001 0,001 0,002 0,002 0,003 0,003 0,005 0,002 0,001
0,5 0,028 0,031 0,025 0,030 0,013 0,015 0,009 0,007 0.012 0,009 0,024 0,017 0,033 0,016 0,007
0,8 0,186 0,204 0,163 0,194 0,080 0,089 0,050 0,043 0,069 0,050 0,121 0,106 0,217 0,096 0,038
1,0 0,442 0,482 0,389 0,459 0,183 0,203 0,109 0,094 0,149 0,109 0,269 0,238 0,511 0,218 0,084
3,0 0,408 4,592 3,708 4,352 3,111 3,300 1,199 1,723 2,659 2,008 3,789 3,564 4,896 3,412 1,555
5,0 1,492 1,531 1,780 1,444 3,583 3,746 3,849 3,582 4,654 3,880 3,535 3,959 2,188 3,916 3,374
8,0 2,779 2,568 2,538 2,569 1,690 1,581 3,501 3,624 2,804 3,410 1,982 1,801 2.834 1,792 3,506
10,0 2,040 2,382 1,891 2,263 2,434 2,737 2,319 2,351 1,591 2,314 2,799 3,189 2,397 2,868 2,523
13,0 2,359 1,974 1,994 2,169 2,164 2,113 2,093 1,932 2,231 2,166 1,847 2,003 1,977 2,280 1,704
115,0 2,660 2,510 2,207 2,618 1,956 1,989 2,476 2,556 2,684 2,744 2,448 2,335 2,575 1,999 2,425
18,0 2,106 2,039 1,972 1,971 2,571 2,607 2,442 2,619 2,025 2,556 2,241 2,469 2,314 2,458 2,668
20,0 2,524 2,262 2,365 2,336 2,178 1,931 1,919 2,319 1,809 2,009 2,132 2,053 2,322 2,047 2,363
23,0 2,231 2,478 2,112 2,197 2,435 2,302 2,026 2,185 2,532 2,049 2,358 2,543 2,348 2,419 1,854
25,0 2,197 2,224 2,435 2,040 2,388 2,368 2,390 2,290 2,341 2,430 2,001 2,084 2,057 2,251 2,153
28,0 2,331 2,274 2,381 2,424 2,079 2,035 2,292 2,490 2,065 2,260 2,373 2,283 2,234 2,204 2,483
30,0 2,052 2,073 2,347 2~048 2,407 2,385 2,023 2,128 2,088 2,084 2,120 2,292 2,161 2,356 2,229
40,0 2.273 2,330 2,122 2,190 2,082 2,063 1,991 1,102 2,202 1,986 2,336 2,202 2,173 2,058 2,196
50,0 2,135 2.085 2,208 2,176 2,182 2,218 1,932 2,106 2,325 2,022 2,065 2,033 2,101 2,170 2,187

Commas indicate decimal points.

Analysis of the a2 curve (Figure 5.28) shows that the dependence of the

attenuation cross-section of the two-layer hailstone with the indicated layer
densities on the thickness of the shell is much less pronounced than the

dependence of o0 .  Thus, softening of the outer layer with hsh = 0.2 bI does

not effect the magnitude of 02 with an accuracy of 30%.

A further increase of the less dense shell in the range v < 3.5 leads to

a decrease in 02 to the values of a solid hailstone with p = pl = 0.600 g/cm3 ,

and increases by a factor of 1-2 in the range 3.5 < v < 6.5 02"
b

For v > 6.5, the 02 curves of hailstones with b , equal to 0.8 and 0.5

are oscillatory in character, asymptotically approaching one another. At

v > 15, the factor for two layers may be neglected and a2 may be assumed to

be the same as in the homogeneous hailstone.

P2 = 0.916; Pl = 0.380. As is evident from Table 5.14, for 1 < v < 15

the 0 curve for the hailstone with hsh = 0.04 bI undergoes slight oscillations
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about the curve for the homogeneous hailstone with p = 0.916 g/cm
3 , whereas

at v > 15 this shell substantially decreases the magnitude of radar

scattering (for example, at v = 20 a0 it decreases by a factor of 22),

particulary at v > 30, and a0 approaches the o0 values of the hailstone with /21

p = 0.380 g/cm3 . As hsh increases to 0.10 bl, o0 at 1 < v < 20 basically

decreases, and at v > 20, increases and occupies an intermediate position

between hsh = 0.04 b and hsh = 0.00 b . An increase in the thickness of the

softer shell by a factor of 2.5 (to 0.10 bl) leads at v > 20 to a substantial

increase of the radar scattering '(for example, at v = 20, a0 increases by a

factor of 8, and at v = 50, by a factor of 13).

1-3

2 4 6 8 10 12 14 16 18 20v

Figure 5.28. Effective Attenuation Area a2 of Homogeneous

Hailstones With Densities of 0.916 g/cm
3 (1) and 0.600 g/cm 3

(2) and a Two-Layer Hailstone with Layer Densities p2 
= 0.916

3, = 0.600 g/3 b b
g/cm , p = 0.600 g/cm for 2 = 0.5 (3) and 2 = 0.8 (4).

Figure 5.29 shows a0 curves of hailstones with a large hsh: 0.2 bl and

0.5 b i . It is evident that the o0 curve of the hailstone is b2 = 0.8 for

b
1

v > 1 passes between the o0 curve of the homogeneous hailstone with p = 0.916
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3 2

g/cm and the o0 curve of the hailstone with = 0.5, i.e., as the thickness
1

of the shell increases from 0.2 b1 to 0.5 bl, a0 decreases, particularly at

9.5 < v < 15. Moreover, the two-layer hailstone with hsh = 0.5 b1 has

approximately the same effect on the radar scattering as the homogeneous
hailstone with p = 0.380 g/cm 3 .

The behavior of the effective attenuation area a2 is the same here

(Figure 5.30) as in the preceding case. A characteristic feature of the
layer density ratio under consideration is an increase in the oscillation /219
amplitude of the curves and as a consequence, a somewhat greater difference
in the values of a2 than in the preceding case (see Figure 5.28).

3 I3

= 0.916 g/cm p = 0.380 g/cm at 2 = 0.5 (3) and
1 I IJ all I1 1 ,I i I u-

IV 1

2 6 8 00 2 (4)16v

Figure 5.29. Values of a 0 of Homogeneous Hailstones /218

with Densities of 0.916 g/cm 3 (1), 0.380 g/cm3 (2)
and a Two-Layer Hailstone with Layer Densities p2' =

3 3

0.916 g/cm 3 , P = 0.380 g/cm 3 atb2 = 0.5 (3) and

b2 b2
- = 08 (4).

2 = 0.600 g/cm ; pl ='0.380 g/cm.. The magnitude of g0 at hsh = 0.04 bl

and 1 < v < 8 is smaller, and at v > 8 oscillates about the corresponding
a0 values of the homogeneous hailstone with p = 0.600 g/cm 3 . As the shell
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thickness increases to 0.10 bl , o0 at 0 < v < 13 decreases, and at v > 13

occupies an intermediate position between aO for the cases 2 =,0.96 and

b 2b
2= i.

b I

o o

! ,0 

i 2 = 0 .o o 1 =

I 1

//_ ---,

2 4 6 8 10 12 14 26 18 20 v

Figure 5.30. 02 of Homogeneous Hailstones with Densities
3 3

of 0.916 g/cm (1), 0.380 g/cm (2), and of a Two-Layer
Hailstone with Layer Densities p2 = 0.916 g/cm 3, pl

= 0.380 g/cm of Thickness 2 = 0.5 (3) and 2 = 0.8 (4).

Figure 5.31 shows o0 curves for a shell thickness of 0.2 bI and 0.5 bl

is close to the values corresponding to a homogeneous sphere with p = 0.380

g/cm 3
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3fII I IJ
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'l 'i! .I

"J '.I,

2 4 6 8 toV

Figure 5.31. o0 of Homogeneous Hailstones with Densities of
0.600 g/cm 3 (1) and 0.380 g/cm 3 (2) and of a Two-Layer Hailstone
with Layer Densities p2 = 0.600 g/cm 3, p1 = 0.380 g/cm3 of
Thickness b2 = 0.5 (3) and b2 = 0.8 (4).

bI  b1

Calculations show that the lower the layer densities, the more oscillatory /220
the variations of a0 with v.

Analysis of the attenuation cross-section 02 (Figure 5.32), however, leads
to the conclusion that the oscillation amplitudes of the corresponding curvesdecrease. From Figure 5.32 it is also evident that a shell less than 0.2 b1
thick has practically no effect on the 02 values, whereas the magnitude of

02 of the hailstone with the ratio b2 = 0.5 at v < 5 is the same as 02 of
1

a homogeneous hailstone with p = pl = 0.380 g/cm3 . In contrast, in the range
9 < v < 15, the hailstone with b2 = 0.5 attenuates the radio waves in the same

1

way as a.homogeneous hailstone with p = p2 = 0.600 g/cm
3 . The 02 curves for

the densities considered at all v differ by not more than 80%. Analysis of
results of the calculation of 02 for hailstones with shells of large thickness

219



(over 0.75 b1 ) for all the pairs of densities considered shows that at hsh >

> 0.75 bl, such hailstones may be considered homogeneous with densities 
equal

to the densities of the shells.

f 
1

liI

i,__ -- 2

2 4 6 8 10 12 14 16 18 v

Figure 5.32. 02 of Homogeneous Hailstones with Densities of

0.600 g/cm 3 (1), 0.380 g/cm 3 (2) and of a Two-Layer Hailstone

with Layer Densities P2 = 0.600 g/cm
3, Pl = 0.380 g/cm 3 of

Thickness 2 = 0.5 (3) and = 0.1 for 10 < v < 16, to a4).

Insmaller p order to establish the dependence of the radas for the properties of a hailstone
on the shell density p1 at constant core density 2  0.916 gtis /22

corresponding to the two ratios 2 : 0.8 and 0.5.
b1

It follows from the comparison that at hsh = 0.2 bi for 10 < v < 16, to a

smaller p1 there corresponds a smaller 00, whereas for the remaining v, the

curves oscillate relative to one another. If however hsh reaches 0.5 bl , then

at 1 < v < 14, v = 19, to a larger p1 there corresponds a smaller 00, with the

exception of the range for 14 < v < 19, where the curves are oscillatory in

nature.
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b
A difference in the shell densities of the hailstones with -2= 0.8 has

no effect on 02 and the range of 15-25% of its magnitude, whereas at b2 = 0.5
b1

the dependence is more complex: in the ranges v < 6; 12 < v < 15, a denser
shell has larger a2 values (by 20-80%) associated with it, and at 8 < v < 12,
vice versa. In the remaining range of v, the a2 values coincide with an
accuracy not in excess of 20%.

Comparison of a0 and a2 curves at constant p1 = 0.380 g/cm3 and variable
P2 makes it possible to determine the effect of core density on the values of
the radar scattering and attenuation cross-sections. Thus, at hsh = 0.2 b1

for essentially all v, a larger p2 has a larger o0 associated with it. When
the shell thickness increases to 0.5 bl, this property is preserved, but
starting at v > 7.

For the hailstone with b2 = 0.8 at the same densities of the core (0.916

and 0.600 g/cm 3) and shell (0.380 g/cm 3), to a larger p2 there corresponds a
larger effective attenuation area (20-40%) only in the range v < 4.

For v > 4, the opposite dependence is observed up to v = 9, beyond which
the core density of the hailstone with b2 = 0.8 has no substantial effect on

b1
the magnitude of 02. As the shell thickness increases, the a2 values of the
layered and homogeneous hailstones come closer together. For example, at
b2 = 0.5 and v < 5, the core density, which substantially exceeds the shell
b

density, plays practically no part at all, and the corresponding curves
coincide with the curve of the homogeneous hailstone of the same size with
P = Pl = 0.380 g/cm3 .

Layered Hailstone with p1 > p2. Let us now consider the properties of
a hailstone with the same densities (but taken in reverse order) and relative
layer dimensions as in the case pl < p2 . Analyzing the data of Tables 5.14
and 5.15, corresponding to the condition p1 > p2, we come to the conclusion
that the appearance on the hailstone of a harder layer (for example, as a
result of icing over), not more than 0.1 bl thick has practically no effect
on a 0 at v < 1 and on a2 at any v.
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Combining this result with what was stated for the case p1 < p2' one can /222

assert that hsh < 0.1 bl , from the standpoint of radar scattering for v < 1

and attenuation for all v, a two-layer hailstone may be considered homogeneous

with p = P2 '

P2 = 0.380 g/cm3 , p 1 = 0.600 g/cm3. For v > 1, as the rule, a shell 0.04

bl thick causes an increase in o0 (in comparison 
with the homogeneous hailstone

with p = 0.380 g/cm3), that is very substantial at certain v (for example, at

v 13, o0 increases by a factor of 7, and at v = 18, by a factor of 30). A

further increase in shell thickness to 0.1 bl leads to an even greater increase

in the magnitude of back scattering, to approximately v = 18, after which a00

approaches its asymptotic values. This phenomenon is associated with a sharp

decrease in the magnitude of radar scattering (for example, at v = 20, o0

decreases by a factor of 20, and at v = 23, by a factor of 175). Calculations

show that starting at v = 60, the magnitudes of 00 for the indicated

thicknesses differ by their limiting values.
b2

If v < 3.5, the difference in 00 of the layered hailstone with bi equal

to 0.8 and 0.5 and of a homogeneous hailstone with p = 0.600 g/cm 3 is

insignificant; if however at 3.5 < v < 7, than as hsh increases from 0.2 b1

to 0.5 bl, the value of a0 diminishes, approaching those of radar scattering of

a homogeneous hailstone whose density is equal to that of the shell.
b
2

For 7 < v < 16.5, the 00 curve of hailstones with ~- = 0.8 oscillates

about the o0 values of a homogeneous hailstone with p = 0.600 g/cm and of a

b

regions (for example, 8 < v < I1). Let us note that a increase in hsh to

0.5 b1 causes a decrease in radar scattering to 00 values of the homogeneous

hailstone with p = 0.600 g/cm3. Hence it may be concluded that a layered

hailstone with a shell 0.5 b thick and the given densities has the same

magnitude of backscattering as a hailstone with a density equal to that of

the shell.
b

Curve a2 (Figure 5.33) of the shell with b - 0.8 occupies an intermediate
1 g 3

position between the 02 curves of homogeneous hailstones with p = 0.600 g/cm

and p= 0.380 g/cm3, and at v > 6 it has a tendency to approach the corresponding
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curve for the hailstone with density 0.380 g/cm . A further increase in the
thickness of the denser shell to 0.5 bI causes the two-layer hailstone with

v < 7 to attenuate electromagnetic radiation to the same extent as the
homogeneous hailstone with p = 0.600 g/cm 3. For large v, the curves exhibit
a complex oscillatory character.

P2 
= 0.380 g/cm3; P1 = 0.916 g/cm

3 . As is evident from Table 5.14, the
presence on the hailstone of the harder shell 0.04 bI thick for v > 1 leads to

an appreciable increase in oscillations and an overall increase in 0, this /223
increase in certain ranges of v being much greater than in the case of a0 of

the hailstone with p2 = 0.380 g/cm3 and pl = 0.600 g/cm 3 , this being apparently
due to the higher density of its shell. As hsh increases further to 0.1 bl,
the 00 values become much larger than a0 of the homogeneous hailstone of

density 0.380 g/cm , and much lower than a0 of the hailstone with p = 0.916

g/cm 3 .
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Figure 5.33. 02 of Homogeneous Hailstones with Densities

0.380 g/cm 3 (1), 0.600 g/cm3 (2) and a Two-Layer Hailstone
with Layer Densities p2 = 0.380 g/cm3 , P1 = 0.600 g/cm 3 of

Thickness 2 = 0.5 (3) and p2 
= 0.8 (4).
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Figure 5.34 illustrates the behavior of a two-layer hailstone with b

equal to 0.8 and 0.5 for v < 10. It is evident that in the range 5.5 < v < 7.5

the two-layer hailstone with b2 = 0.8 scatters backward much more energy than

b1 
3

than the homogeneous hailstone with p = 0.916 g/cm . An increase in shell

thickness from 0.2 b1 to 0.5 b1 results in a decrease in backscattering only

at v < 5. Further, up to v ~ 10, the a0 values of hailstones with shells of

both thicknesses are practically the same.

For v > 10, the 0 curve of the hailstone with - = 0.8 is practically

the same as the o0 curve of the hailstone with p = 0.380 g/cm , while the

curve for b2 = 0.5 substantially predominates over them both only in the

range 10 < v < 13.5.

5 - -- 2

2 4 6 8 I0v.

Figure 5.34. a2 of Homogeneous Hailstones with Densities

0.916 g/cm3 (1), 0.380 g/cm3 (2) and of a Two-Layer
Hailstone with Layer Densities p2 = 0.380 g/cm

3 , p =

S0.916 g/cm3 of Thickness b2 = 0.5 (3) and b2 = 0.8 (4).

b1 b1
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It should be noted that for large v, the difference between the homogeneous
hailstone with p = 0.916 g/cm3 and the two-layer with b2 = 0.5 is very

1
substantial.

The effective attenuation area (Figure 5.35) of the hailstone with a
shell 0.5 bI thick for v < 3 coincides with a2 of the homogeneous hailstone of

density 0.916 g/cm 3 . Comparing this case with the preceding one (see Figure
5.33), we see that a compaction of the shell, its thickness being the same,
leads to a decrease in the limits of variation of v within which the layered
hailstone attenuates electromagnetic waves to the same extent as the homogeneous
hailstone with p = p i In the range 4 < v < 6, the hailstone with shell
thickness 0.2 b attenuates radio waves 3-5 times more than the hailstone with /225

hsh = 0.5 bl, and at 6 < v < 10, the same number of times less.

P2 = 0.600 g/cm3; P1 = 0.916 g/cm
3 . In this case, in contrast to those

already discussed, the presence of a thin shell ~ 0.04 bI thick and its

increase have less effect on the radar scattering, this being due to a much
smaller difference in the densities of the shell and the core.

Figure 5.36 shows a0 curves of hailstones with shells 0.2 b1 and 0.5 bl.

For v < 3, the difference in shell thickness does not affect the radar
scattering, and a0 is practically the same as a0 of a homogeneous sphere with

p = 0.916 g/cm ; at 9 < v < 15, to a larger hsh there corresponds a larger a00,
and at 15 < v < 18, a smaller aG0 . For v > 18, at both thicknesses, the curves

approach the curve for p = 0.600 g/cm 3

The character of the behavior of the attenuation cross-section a2 in this

case is basically the same as in the preceding case.

Analysis of the calculations shows, as in the case p2 > p1 , that for all

the indicated combinations of density pairs, the layered hailstone with shells
of large thickness (hsh > 0.75 bl) may be regarded as a homogeneous hailstone /226
whose density is equal to that of the shell.

In order to determine the dependence of the radar properties of the
hailstone on the core density, it is necessary to compare the 0 and 02 curves

of the hailstones with pl = 0.916 g/cm3 , p2 = 0.600 g/cm 3 and p2 = 0.380 g/cm
3

(Figures 5:34, 5.36, 5.37). Thus, at hsh = 0.2 b1 up to v ~ 9, the a0 curves

oscillate relative to one another. For v > 9, to a denser core there
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corresponds a much larger a0, whereas at v > 20, both curves approach their

asymptotic values and differ little from each other. When the shell thickness
is 0.5 bl, the effect of core density on backscattering is less evident,

this being due to the properties noted above. The establishment of oscillations
about the asymptotic values for hsh = 0.5 bl also occurs somewhat earlier

here, i.e., at v ~ 16.

A.1

3 I I iV r 2

o 2 j 6 8 10 12 14 18 18v

3rv

0.916 g/cm 3 (1) and 0.380 g/cm 3 (2) and of a Two-Layer
Hailstone with Layer Densities p2 = 0.380 g/cm 3 , p1 =

3 b b0.916 g/cm of Thickness 2 = 0.5 (3) and 2 = 0.8 (4).
bl b1

Analysis of a2 curves shows that at 2 = 0.8, the core density does not

1
play any role to within ±25% only at v > 7. However for larger v, the a2
values at core densities of 0.380 and 0.600 g/cm3 and a constant shell density
P1 = 0.916 g/cm

3 may differ by a factor of 2.5-3. For the case b2 = 0.5, the

b
effect of core density decreases substantially (Figure 5.37).
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Figure 5.36. o0 of Homogeneous Hailstones with Densities
3 3

0.600 g/cm (1), 0.916 g/cm (2) and of a Two-Layer with
Layer Densities p2 

= 0.600 g/cm3 , p1 = 0.916 g/cm 3 of

Thickness 2 = 0.5 (3) and 2 = 0.8 (4).

This one compares the dependence of o0 on the shell density p1 at constant

core density, one can note that at hsh = 0.2 bl for 1.5 < v < 7.5, 00 of the

hailstone with the shell density p = 0.916 g/cm is approximately twice as /227
large as the radar scattering of the hailstone with a shell of lower density

pl = 0.600 g/cm3 , and in the range 7.5 < v < 14, almost one-half as large.

At v > 14, the 00 values oscillate relative to one another, approaching the

limiting magnitudes.

If however, hsh = 0.5 bl, the character of radar scattering is basically

preserved, with the exception of the range 7.5 < v < 14, where the difference
in the 00 values of hailstones with shells having densities of 0.916 g/cm3

and 0.600 g/cm decreases by a factor of 2-3 in comparison with the preceding
case.

Comparison of 02 curves (Figures 5.33, 5.37) at p2 = 0.380 g/cm 3 and

3 3

variables ayer = 0.600 g/cm and p = 0.916 g/cm shows that as the shell

thickness increases from 0.2 b to 0.5 bl, its effect on the magnitude of 02

increases sharply, chiefly at v h> 5.
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Figure 5.37. a2 of a Homogeneous Hailstone of Density

0.916 g/cm 3 (1) and a Two-Layer Hailstone with ShellDensity p I= 0.916 g/cm 3 and Core Densities 0.380

g/cm 3 t2), 0.600 g/cm 3 (3). b2 = 0.5.
b

It should be noted that all of the above is essentially qualitative in

character and may prove useful in a radar study of clouds and precipitation
as well as in other problems.

Multilayer Hailstone. It was shown in 5.1 that an actual hailstone
is generally multilayered. In order to determine the extent to which the /229

0radar characteristics of a hailstone are effected by its layers (when there
are more than two) of different densities, the effective areas of radar
scattering and attenuation a wereadar study of c from exact diffraction

formulas (1.277), (1.274), (1.248), (1.261)-(1.263) for a five-layer round

hailstone with concentric layers. In the symbols of Chapter I (see Figure 1.5),
the following was assumed in the calculations:93 b5 = 0.65 bl; b4 = 0.79 bl;

b 08. ; P2 
= 0.46;

b3  0.89 bl; b2 0.96 bl cm; p5 = 0.916; p 0.76; p3  0.60; p = 0.46;

93bj(j = 1, 2, 3, 4, 5) - radii of layers, b1 > b2 > b3 > b3 > b5 ; 5 - density

of sphere of radius b5 , p- density of region between spheres of radii bj and

bj + I ' j = 4, 3, 2, 1.
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P = 0.34 g/cm ; t = OOC; v = "al ; X -- wavelength of the lower portion of

the centimeter range (see reference on page 212). The parameters of the layers
were chosen on the basis of the experimental data cited in [228, 161-165] etc.
The dielectric constants of ice of the corresponding density were chosen from
Table 4.31.
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Figure 5.38. o0 of Five-Layer (1) and Two-Layer (2) Hailstones /228
3 3 bwith p2 

= 0.916 g/cm = 0.600 g/cm . 2 = 0.5.2 1

Results of the calculation are given in Figures 5.38 and 5.39.

Illustrated for comparison are a0 and 02 curves of a two-layer hailstone

with a shell density close to the mean square of the densities pl', P2 , P3 ' 4
(0.56 g/cm ).

It is obvious that such an apprdximation of the multilayer hailstone by
a two-layer hailstone with averaging of the densities of all the layers
beginning with the second gives a fairly good approximation from the stand-
point of the radar characteristics. Thus, for all the v considered, the
magnitude of the effective attenuation area 02 of a multilayer hailstone differs
from that of the two-layer hailstone by an average of not more than-30-50%. /230
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Similar discrepancies are observed in the 00 values of these hailstones at

v < 9.5. At greater v, however, the oscillations and amplitudes of function

*0 of the multilayer hailstone increase, and the discrepancies in the 00

values of the two-layer and multilayer hailstones increase. This is explained

primarily by the fact that an increase in the number of layers of the hailstone

generally has a substantial retarding effect on the tendency of the radar

characteristics to reach their limiting values. It should also be noted at

this point that the curves of the two-layer hailstone being compared have the

b

corresponding error (see Figures 5.27 and 5.28) into the final values of 00

and 02. Numerous calculations of 00 and 02 which we made for multilayer

hailstones with different dimensions of the concentric layers and their
densities show that the more layers the hailstone has and the smoother the

transition in the values of their densities, the smaller the error of its

approximation by a two-layer hailstone such as the one indicated above. The
converse is also true. Thus, for some choice of the parameters of a three-

-layer hailstone, its 00 and 02 may differ by 400 to 600% from 00 and 02 of

the two-layer hailstone corresponding to it. According to similar calculations,
the discrepancies in 00 and o2 of a five to eight-layer hailstone with a core

density of 1 g/cm 3 and with pj = 80 to 100% pj + 1 (and vice versa) from the

two-layer hailstone corresponding to it are no greater than 20 to 45%.
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Figure 5.39. 02 of Five-Layer (1) and Two-Layer (2) Hailstones
3 3 b

with p2 
= 0.916 g/cm , p = 0.600 g/cm . 2 = 0.5.

1
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As was noted in § 5.1, actual hailstones frequently have a nonconcentric
layered structure (see Figure 5.1). In order to determine the role of
nonconcentricity in the arrangement of the layers, the exact diffraction
formulas (1.230), (1.222), (1.240), (1.210), (1.90) were used to calculate /231
the effective areas of radar scattering o0 and attenuation a2 for a three-

-layer spherical hailstone [12] with the following parameters of its layers
(see Figures 1.1 and 1.4): b2 = 0.8; b3 = 0.25; h2= 0.125; h3 = 0.5; Xj = 0

b b2 b b2 3 3
= 6j; (j = 1, 2); medium 0 - air; medium 1 - ice with density of 0.38 g/cm

medium 2 - ice with density of 0.60 g/cm3; medium 3 - ice with density of 0.92
g/cm 3; A = 3.21 cm; t = 00 C.

Results of the calculations are shown in Figure 5.40, 5.41.

60
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Figure 5.40. a0 of Three-Layer Hailstone for Concentric

(1) and Nonconcentric (2) Arrangement of the Layers.

For comparison, the same figures include parts of oa0 and a2 curves of a

three-layer hailstone with concentric layers of the same density, formed by
spheres of the same radii bl, b2, b3, as in the case of a nonconcentrically

layered hailstone.

It is evident from the figures that for radar scattering a0 at v < 10, the

nonconcentricity of layers may be neglected to within 25%. In the range
v > 10, the ratio of g0 values corresponding to the two cases of arrangement

of the layers may reach 1.8-2.3.
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Figure 5.41. 02 of Three-Layer Hailstone for Concentric (1)

and Nonconcentric (2) Arrangement of the Layers.

For the effective attenuation area, however, the difference in 02 values

for all v < 20 does not exceed 20%. Such a comparatively moderate influence

of nonconcentricity of the layers on a cross-section 00 and 02 should

apparently be attributed only to the small values of the ratios h3 and h2

b b

Individual points of 00 and 02 calculated9 4with other, somewhat larger values

of h3 and h2 show that they may differ by a factor of 2 to 5 from 00 and 02 of /231

b3 b2
a concentrically layered hailstone. Moreover, it should be noted that the

dependence of 02 on the nonconcentricity of the layers is much less pronounced

than the dependence of 00

§ 5.5. Scattering and Attenuation of Microwaves By a Wet Hailstone

Wet Hailstone. In discriminating between hail and rain clouds with radar

and studying the microstructure of hail clouds and other problems, of con-

siderable interest is the investigation of the dependence of the scattering

and attenuation characteristics of a wet hailstone on the thickness of the

water film.

94 For provided that Xj= 0 = .; X = 3.21 cm, t = O0C and for the same

densities and ratios b2, b3
b1 b2
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Some reflection aspects of these questions have been discussed in
[229-232, 220, 146, 149, etc.], where it was shown that the presence of even
a very thin surface film of water may appreciably affect the values of the
back scattering cross-sections of the ice particles. However, these studies
still do not provide a basis for a conclusion as to the manner in which the
reflection and attenuation of radiowaves of various lengths take place on
hailstones under natural conditions.

In order to supplement the known data by studying the cross-sections of
radar and total scattering, and also the attenuation for wet ice spheres at
film thicknesses occurring on hailstones during both their growth and melting,
calculations were carried out [233, 234]9 5.to determine the dimensionless
cross-sections of radar a0 and total oI scatterings and also attenuation 02
over a wide range of particle sizes and wavelengths. The calculations were
carried out by using the exact diffraction formulas (1.276), (1.273), (1.274),
(1.281-1.283) for a two-layer (see Figure 1.6) spherical particle. The
general symbols were retained here: b2 - radius (in cm) of ice core with a

density of 1 g/cm 3, bI - outer radius (in cm), equal to b1 + hsh (hsh being the
1 2r1 sh sh

thickness (in cm) of the water shell), v = 2bl. The temperature of the ice

core and water film is assumed to be 00 C. The dielectric constants of water
were chosen for the wavelengths 0.86, 3.2, 5.6, 11 and 17 cm from the appendix
and those of ice from Table 4.33 after [136]. The film thickness was varied
from 10-4 to 10-1 cm at each A.

Figure 5.42 shows .the dependence of 00 values of a wet hailstone on bl

at different A and hsh. The curves for spheres of solid ice and water are

also shown for comparison.

It is evident from Figure 5.42 that the presence on the ice sphere of a
surface water film only 0.01 cm thick has an appreciable effect on 00, and

the smaller X, the greater the deviation from 00 values of equally large ice

spheres; even at A = 17.0 cm and hsh = 0.01 cm, this deviation is rather /234
substantial.

Hence, for the wavelengths used in meteorology, scattering by wet hailstones
must not be treated as scattering by ice spheres. Because of large intervals
between the individual calculated points and a marked oscillation, the curve

95 Individual calculations of 00, 01, .2 as functions of the core radius for

water film thicknesses of 0.01, 0.05 and 0.1 cm are given in [234]. In this
paper, misprints in the table headings should be corrected; b should be
replaced by a, 01 by 02, 02 by o01
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of the dependence of 0 on v at X = 0.86 cm has been replaced in Figure 5.42

by individual points whose location shows that even at hsh = 0.01 cm, this

curve oscillates about its asymptotic value, as in the case of a0 for water

spheres. At X = 11.0 and 17.0 cm, this curve moves further and further away
from its asymptotes while oscillating randomly as v increases. The 00 curves,

however, at X equal to 3.2 and 5.6 cm, occupy an intermediate position, and

although the curve for X = 3.2 cm is considerably closer to the curve for

water spheres than for ice, the difference between the a0 values of wet ice

spheres and a0 of water spheres is still fairly significant.

At hsh equal to 0.05 and 0.1 cm, the curve of 00 versus v for all wave-

lengths oscillates about a certain value a* close to the asymptotic value for

spheres of continuous water, although at hsh = 0.05 cm in the range of v

under consideration, the damping of oscillation characteristic of 00 of water

spheres is still imperceptible (Figure 5.42, b and c).

It also follows from Figure 5.42 c that the character of scattering by

wet ice spheres with a surface film 0.1 cm thick is closer to the character

of scattering by water spheres. The curves for wet ice spheres have deep

minima and maxima at which they differ by a factor of 10 to 100 from similar

points of the curves for continuous water spheres, and even more (by a factor

of 1,000 at many points) for solid ice spheres. The presence of such deep
minima and maxima is confirmed by the experimental studies made by D. Atlas

[149].

Thus, scattering by wet hailstones must not be regarded as scattering

by water particles of equal size, let alone by particles of dry ice. It can

be stated only that the total radar scattering sections of the spectrum of

wet spherical hailstones at hsh = 0.1 cm will be approximately equal to the

total radar scattering cross-sections of water spheres by the same spectrum

(especially at v < 2). As is shown by calculation, this conclusion applies

to all the wavelengths considered. Therefore, in the part of the hail cloud

where the main growth of the hailstones takes place under single crystal

conditions and the water film thickness on the hailstones may reach 0.1 cm

or more, the back scattering for all the X used in meteorology may be

interpreted as scattering by water particles of the same size. The same is

true in the range X < 3.2 cm of melting hail below the zero degree isotherm
level, where the thickness of the surface film may reach only 0.01 cm. At

X > 3.2 cm, it is necessary to use only the values of back scattering cross-

-sections for two-layer particles. These conclusions are confirmed by

experimental data on the size of the falling hail and on the values of the /235

radar reflectivity of hail clouds, presented in [233].
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Figure 5.42. 0 of Spheres of Wet Ice at Different X, and /233

Also of Spheres of Solid Ice (Curves I) and Continuous
Water (Curves II) at X = 3.2 cm. a) hsh = 0.01 cm, b)

hsh = 0.05 cm; c) hsh = 0.1 cm.
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The attenuation of radar radiation in hail clouds and precipitation
as well as the intensity of radar scattering depend considerably on the state
of the hailstone surface (Figures 5.43, 5.44).

10'fOI
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Figure 5.43. a2 of Wet Ice Spheres At Different hsh

and Spheres of Solid Ice (Curve I) and Continuous
Water (Curve II) at X = 3.2 cm.

It follows from Figure 5.43 that in the range of small particles (bl < 0.7

cm), the presence of a water film on the hailstone surface, even 0.01 cm thick,
increases the values of dimensionless attenuation cross-sections a2 of ice

spheres, and when hsh becomes of the order of 0.05 cm the a2 values surpass

the values of the cross-section corresponding to spheres of continuous water.
However, in the range of large particles, the a2 values are almost independent

of hsh and even at hsh = 0.01 cm are approximately equal to the attenuation

cross-sections of spheres of continuous water. It should be noted that like
G0 , the a2 values of wet hailstones increase with increasing hsh in the range

of small particles, while those of large particles decrease, approaching in
both cases the cross-section values characteristic of continuous water spheres;
attenuation by wet spheres at hsh = 0.1 cm in the range of small particles is

two orders of magnitude greater, and in the range of large particles, 4 to 6
times less than attenuation by solid ice spheres.

To study the attenuation in hail clouds at different wavelengths, Figure
5.44 shows a 2 values for hsh = 0.1 cm. Analysis of the a2 values shows that

at the hailstone concentrations possible in hail precipitation (according to
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[235], an average of 10-3 ), the attenuation of radiation with X < 11.0 cm at
hsh 0.01 cm is negligibly slight, up to b1 < 0.7 cm, whereas the linear

attenuation coefficient at X < 5.6 cm may reach 5 db/km. This is satisfactorily /236
confirmed by experimental data [235]. However, at hsh = 0.1 cm (i.e., in the

zone of moist growth of hail), starting at b1 > 0.3 cm, one cannot neglect the

attenuation of radiation even at X = 11.0 cm (Figure 5.44), since as hsh

increases from 0.01 to 0.1 cm, there is an approximately ten-fold increase in

1 for X = 11.0 cm in the range of small bl (b1 < 2).

a2

0100,

0,4 0- 582 1,6 2,0 2,4 Ad

Figure 5.44. 02 of Wet Ice Spheres Versus Radius b1

at Different Wavelengths. Thickness of surface water

Film hsh = 0.1 cm.

To examine the transfer of radar radiation in hail clouds, it is necessary

to study the dependence of the dimensionless total scattering cross-section

a of a wet hailstone on the'thickness of the water film on its surface.

As follows from Figure 5.45, the dependence of a1 on hsh is substantial

only in the range of small particles, in particular, for X = 3.2 cm at bl < 0.6
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cm. In the region of large particles, however, according to Figures 5.45

and 5.46, the a1 values for all the hsh and X considered are approximately

equal to 1.5, this value being reached at v*> 0.4.

In the range v < 0.4, however, the a1 values for the wavelengths under

consideration may differ by several orders of magnitude, decreasing with
increasing X.
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Figure 5.45. o of Wet Ice Spheres Versus bl for Different /237

Thicknesses of the Water Film hsh . = 3.2 cm.

Let us note in conclusion that when the relationships obtained are /238

extended to the scattering conditions in hail clouds, it is necessary.to
keep in mind a number of complicating factors. First, during the fall of

wet hailstones, the water film obviously will not be of uniform thickness,
and according to the data of various authors, may collect in a ring in a plane

perpendicular to the direction of fall of the hailstone.

Secondly, the radar characteristics of a hail cloud are obtained as the

result of scattering not only by hailstones but also by water drops. Finally,

the hailstones may be coated with a mixture of water and ice instead of a
film of water.

Hailstone Coated With a Mixture of Water and Ice. There are extremely
few studies dealing with such hailstones. Thus, L. Battan and B. German [146]
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perform calculations of only o0 and only at X = 3.21 cm, with hsh equal to 0.01

and 0.1 cm; d equal to 1, 2, 3, 4, and 5 cm. J. Joss and R. List [147] used
5-cm radar to measure the radar cross-section of spheres of artificial hail
consisting of a solid ice core about 2 cm in diameter and a shell 0.2 cm thick
consisting of a mixture of ice and water.

100 0.86

/ /

h = 0.01 cm.

The detailed analysis of these spheres can be found in [149]. Although the
model representations of the dielectric constant of the shell under con-

sideration [see formula (429)] are highly conditional, we deemed it necessary
to make a more detailed qualitative study of this case as a function of a
series of parameters determining it. To this end, we performed calculations

of O0, a and a2 of a hailstone with a shell consisting of a homogeneous

mixture of water and ice (p being the water content of the mixture in percent).
The value p = 100 corresponds to the above-discussed case of a film consisting

solely of water. The dielectric constants of the mixture as functions of p
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and X were chosen from Table 1.7 in [11]96. The temperature was assumed to
be 00C.

Figure 5.47 illustrates the influence exerted by different water contents
of the mixture on the effective radar scattering cross-section area a0 for

different shell thicknesses hsh. It is evident that at a shell thickness of
0.01 cm the presence of 50% of water in the mixture has practically no effect
on the magnitude of a0 . On the other hand, when p increases to 80%, as a rule,
the cross-section o0 decreases by a factor of 2 to 3. As the shell thickness
increases, the role of the water content in the mixture increases. At the
same time, the o0 curves corresponding to p = 80% come increasingly closer
to the a0 curves of completely wet hailstones.

A different picture is observed at wavelength X = 11 cm (Figure 5.48).
Thus, at shell thickness 0.01 cm, the water content of the mixture plays no
substantial role, even when its amount in the mixture reaches 80%. In this /241
case, the hailstone behaves as would a sphere consisting entirely of ice.
As hsh increases, the role of parameter p gains sharply in importance, and at

hsh = 0.1 cm, the hailstone with radius b1 > 2 cm and p = 80% scatters
backward 1.3-2.2 times as much energy as a homogeneous dry hailstone. This
is explained by the fact that at these bl, the o0 values of pure water spheres
are much greater than those of pure ice spheres.

Figure 5.49 shows the effective attenuation area a2 versus bl for hailstones
coated with a homogeneous mixture of water and ice. It is evident that as p
increases, the a2 curves for all the wavelengths considered come increasingly
closer to their asymptotic values. This is clearly evident from Figure 5.49
d where for bI > 1 cm, the a0 curves for A = 0.86, 3.2 and 5.6 cm practically
coincide. However, at p = 80% (Figure 5.49 c), the discrepancies in 02 values
are fairly substantial. As the wavelength increases, the water content of the
mixture plays an increasingly less important role, and at A > 3.2 cm and
p < 50%, it can be assumed that a hailstone coated with a homogeneous mixture
of water and ice has the same p2 values as a dry hailstone of the same radius.

96Table 1.7 in [11] was calculated from formula (4.29) with E from the
appendix and E. = 3.17-4.5.10- i (ni = 1.78; F = 12.610-3 ), both close to
the data of [132]. As was shown in § 5.2, practically the same values of
scattering and attenuation cross-sections are obtained if E. used in the
calculation is taken from Table 4.33 according to [136].
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Figure 5.47. G0 of a Two-Layer Hailstone with the Shell Consisting of /239

a Homogeneous Mixture of Water and Ice at Different hsh and p, and Also

of a Homogeneous Water 'Hailstone (I) and Ice Hailstone (II). X = 0.86
cm, t = 00C. a) hsh = 0.1 cm, b) hsh.= 0.05 cm, 1)q p = 20%, 2) p = 50%,

3) p = 80%, 4) p = 100%.
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Figure 5.48. o0 of Two-Layer Hailstone with a Shell /240

Consisting of a Homogeneous Mixture of Water and Ice
at Various hsh and p, and Also of a Homogeneous Water

Hailstone and Ice Hailstone. X = 11 cm, t = 00 C. For
notations see Figure 5.47.

The same conclusion applies at p - 80% for hsh = 0.01. The dependence

of the effective area of total scattering on p, hsh and bI is shown in Figure
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5.50. It follows from the latter that p < 50% has no appreciable effect on

a1 at any of the shell thicknesses considered. As hsh and p increase, 01
of a two-layer hailstone approaches the magnitude of 01 of a water sphere.

Thus, at p = 80% and hsh = 0.1 cm, the total scattering cross-section of a

hailstone coated with a homogeneous mixture of water and ice and the cross-
-section of a sphere consisting exclusively of water differ by less than 50%
for b1 < 1.5 cm and almost coincide at b1 > 1.5 cm.

As p increases, the 01 curves for different A come.closer together, as do

the 02 curves, approaching their limiting values.

Hailstone Coated With Wet Snow. Here we will examine the radar
characteristics of a two-layer hailstone whose core consists of ice of
different densities, and whose shell is made up of wet snow with a density of

0.38 g/cm3 . According to the arguments of § 4.2, 5.1, snow with a density of

0.34 g/cm 3 is dielectrically equivalent to small hail of the same density.
Therefore, results of calculations of effective scattering and attenuation
areas of such a hailstone may be interpreted in the same manner as the radar
characteristics of a wet hailstone with a character (structure) of its outer
shell differing from that of the hailstone already discussed above.

Calculations of 00 and o2 were made using formulas (1.276), (1.274),

(1.281)-(1.283) with dielectric constants from Table 4.31, 4.32. The same
symbols were used as above: b1 - hailstone radius, b2 - radius of its core

of density p2; P1 - density of shell; p - water content of the shell in percent;

v = ; hsh = b1 - b2'sh 1 2

Analysis of calculations of radar scattering cross-sections of a hailstone /243
coated with wet snow of different humidities and thicknesses shows that the
appearance of 0.4% of water in the snow shell of a hailstone with b2 = 0.8

1

decreases 00 by not more than 10-20%. Figure 5.51 illustrates a further

20-50% decrease in 00 as p rises to 1.6%.

The greater the shell thickness, the larger the amount by which 00 /244

decreases with rising p. This fact is clearly apparent if we compare Figures
5.51 and 5.52. Thus, at a shell thickness of 0.5 bl, an increase in its

moisture content from 0.4 to 1.6% causes a marked decrease in 0o, particulary

in the range 14 < v < 20 (by a factor of 2.5-4).
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Figure 5.49. 02 of Two-Layer Hailstone WKith a Shell Consisting /2L

s h-

p = 100%; 1) = 0.86 cm, 2) = 3.2 cm, 3) X = 5.6 cm, 4)
X = 11.0 cm, 5) X = 17.0 cm.

Figure 5.43 shows a fairly marked dependence of o0 on the shell thickness

hsh at a constant moisture content of the snow. Such a decrease in 00 (by a
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factor of 3 to 15) at constant p takes place mainly as a result of an
increase in the total content of the water mass in the snow shell.

-----2
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Figure 5.50. a0 of Two-Layer Hailstone with Shell Consisting

of Homogeneous Mixture of Water and Ice at Different p and hsh'
and Also of a Homogeneous Water Hailstone (II) and Ice
Hailstone (I). X = 3.2 cm, t = OOC. a) hsh = 0.01 cm, b)

hsh = 0.05 cm, c) hsh = 0.1 cm; 1) p = 20%, 2) p = 50%, 3)

p = 80%, 4) p = 100%.

Figure 5.54 shows a0 as a function of p when the core has the same

density as the shell. It is obvious that for v < 11.5, a 1.6% moisture
content of the shell has practically no effect on the magnitude of ao. For

greater v, the influence of the moisturecontent of the shell is the same as
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in the case discussed above of p2 = 0.916 g/cm
3 . If one compares Figure

5.54 with Figure 5.52, one can see that a decrease in core density leads to an
increase in the range of v where a0 is practically independent of p.

0  "
12

o3 b

2-S

o 2 4 6 8 t1 14 18 20v

and a Shell of Wet Snow with Density p1  0.380 g/cm3 at b

1
= 0.8, t = 00C and Different p.

3
This is also confirmed by calculations with p = 0.600 g/cm . Finally,

Figures 5.55 and 5.56 illustrate the effect of the density of a core coated
with wet snow on the magnitude of a00. It is evident that as the shell

thickness increases, the dependence of a0 on p2 markedly decreases. Calculations
3

for p2 equal to 0.76, 0.600 and 0.46 g/cm confirm this conclusion.

As for the effective attenuation area a2 of the hailstone coated with wet

snow with p < 1.6%, calculations show that it attenuates electromagnetic
radiation to the same extent (to within 1-3%) as the corresponding two-layer
hailstone with p = 0.
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Figure 5.52. a0 of Two-Layer Hailstone with p2 = 0.916 g/cm3

= 0 3 b
and a Shell of Wet Snow with Density p = 0.380 g/cm at 2 =

b1

= 0.5, t = O0C and different p.

To conclude this section, we will consider some of the experimental

studies [236-238] involving the radar characteristics of a melting hailstone.

In 1962, N. Labrum [236] first reported on variations of electromagnetic

energy scattered back by an ice particle in the course of its fusion. A

particle with a cross-section no greater than X
2 was placed in a rectangular

waveguide; energy variations were observed at X = 10 cm. It was found that

the energy scattered back by the ice particle increases rapidly at first,

then falls off to the value corresponding to the final shape of the water

droplet being formed.

In 1965, D. Nicolis [237] continued these investigations on shorter

waves, from 1.20 to 1.67 cm. There different frequency groups were noted for

which the laws of change in reflected energy are substantially different. /248

Thus, at frequencies of 18-19 GHz, a maximum was obtained at the instant when

40% of the mass of the sample was converted into water, this being in

accord with Labrum's experiments [236]. For the intermediate frequency band

(19.5-22 GHz) it was noted that as the ice sample changed into water, the

reflected energy varied aperiodically with the presence of several "steps"

characterizing the fusion process. Finally, at higher frequencies (23-24.8

GHz), the law of change becomes reversed, i.e., a minimum is observed where

a maximum took place in the lower frequency region. As reported in [237],

the experiment was repeated in the laboratory about 500 times with two identical

samples.which were changed at selected frequencies.
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Figure 5.54. a0 of Two-Layer Hailstone with a Shell of Wet Snow

with Density 0.380 g/cm at 2 = 0.5, t = 00 C, p2 = 0.380 g/cm

and p = 0.4% (1) and p = 1.6% (2), and Also of a Homogeneousand ailstone (3) with Density 0.380 g/cm3 at t = 0C.
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Figure 5.55. a0 of Two-Layer Hailstone with a 
Shell of Wet

Snow with Density 0.380 g/cm
3 at p = 1.6%, b2 = 0.8, t = 0 OC,

P2 = 0.916 g/cm
3 and p2 

= 0.380 g/cm
3
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Figure 5.56. o0 of Two-Layer Hailstone with a Shell 
of Wet

Snow with Density 0.380 g/cm
3 at p = 1.6%, 2 = 0.5, t = 0OC,

b1

P2 = 0.916 g/cm
3 and p2 = 0.380 g/cm

3
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A year later, T. Oguchi [238] published selected results of calculations

of effective scattering and attenuation areas of wet particles at 0.86 cm
wavelength. It is seen that the overall character of change in a0 with

increasing v is very close to the experimental measurement of Nicolis [237]
at frequencies of 18-25 GHz, although his model also differed substantially
from the one from which the calculations were made.

§ 5.6. Scattering and Attenuation of Microwaves by a Drop Frozen on the
Outside and a Hollow Hailstone

The analytical model of a two-layer particle and the computer program used
above make it possible also to study the cases of other particles such as
drops frozen on the outside and hollow hailstones (see § 5.1).

A drop frozen on the outside is treated as a two-layer spherical particle
with inner and outer radii b2 and bl respectively. The core of such a particle

consists of water, and the ice shell has a density of 1 g/cm . Calculations of
the effective area of radar a0 and total al scatterings and also attenuation

21rb
a2 for the case of t = O0C, v = 1 = 0.1 are shown in Table 5.16. Here hsh

h h X
b sh sh

b2 -- = 0 and - - = 1 are cases of a homogeneous water sphere and
1 1

ice sphere of radius b1 respectively.

It follows from Table 5.16 that when an ice shell 0.1 b1 thick appears

on the drop, the magnitudes of radar and total scatterings decrease by
approximately 20%, and the:attenuation values, by 10%.

Thus, from the standpoint of radar characteristics, a drop slightly
frozen on the outside behaves as if such freezing did not occur. The dependence
of the scattering cross-sections on the wavelength is very weak. As X increases
from 1 to 10 cm , the a2 values decrease by a factor of 7-8.

Hollow Hailstone. This example is interesting in that it permits one to /250
track in one particular case the influence of air inclusions, so common in
hailstones, on the radar properties of the latter. Calculations of a0 and a2
were made (Tables 5.17-5.19) for a two-layer particle with an air core radius
b2 and radius b1 of an outer layer of a concentric ice shell of density

1 g/cm . For comparison, the tables also list a0 and a2 values of a solid ice

sphere of the corresponding size (bl = b2 + hsh).

Analysis of Tables 5.17-5.19 leads to the following conclusions.

1. The radar scattering of a hollow hailstone may be greater than that of
a solid hailstone of the same size. For instance, at bi = 1 cm, X = 3.2 cm,
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hsh = 0.7 cm; b1 = 0.5 cm, X = 0.4 cm, hsh = 1 cm; b1 = 0.25 cm, X = 0.2 cm

and h = 0.05 cm.

TABLE 5.16. c0 , a1 AND a2 VALUES OF A DROP FROZEN /251

ON THE OUTSIDE.

a- 104 at X cm a 1 l -at cm 2 • 10 at cmh0 1* 02 1
- 3 10 1 3 10 1 3 10.

.0,3 1,76 1,84 1,84 1,18 1,24 1,25 2,53 1,03 0,3640,2 2,28 2,28 2,37 2,36 1,53 1,61 1,62 3,19 1,34 0,485
0,1 2,89 2,99 2,95 1,95 2,04 2,05 3,74 1,65 0,6320,01 3,50 3,58 3,50 2,36 2,46 2,47 4.13 1,95 0,802
0,001 3,57 3,64 3,55 2,40 2,50 2,52 4,16 1,98 0,822
0,0001 3,57 3,65 3,56 2,41 2,51 2,52 4,16 1,98 0,823

1 0,702 0,702 0,702 0,471 0,471 0,471 0,043 0,043 0,043

Commas indicate decimal points.

TABLE 5.17. a0 AND Y2 VALUES OF A HOLLOW HAILSTONE

OF RADIUS 1 CM.

cc at ash a2 at wh

1 0,7 0,5 0,3 0,1 1 0,7 0,5 0,3 0,1

0,6 15,34 10,95 3,25 2,90 0,71 2,72 1,99 2,67 1,76 3,34
0,86 9,70 7,74 6,11 3,75 6,28 3,13 3,45 1,74 2,25 3,12
3,2 0,66 0,97 1,40 1,15 0,15 3,26 3,07 2,64 1,78 0,27
5,6 0,44 0,38 0,24 0,10 1,3. 10-2 0,76 0,70 0,53 0,27 0,05
11,0 6,8. 10-2 6,4. 10-2 5,1 . 10-2 2,9. 10-2 5,4. 10-3 5,7. - 10-2 5,4. 10-2 4,4. 10-2 2,7. 10-2 5,7.10-3
17,0 1,3. 10-2 1,2 - 10-2 1,0. 10-2 6,1. 10-2 1,2. 10-a 1,1 . 10-2 1,0 - 10-2 8,7 - 10-3 5,7 - 10-3 1,6. - 10-3

Commas indicate decimal points.

It follows from the above data that the smaller the size of the hailstone,
the shorter the wavelength for which this condition is fulfilled. This is
explained by such a combination of parameters bl, hsh, and X for which, in

addition to a focusing of the energy starting with certain limiting angles of
incidence, there also takes place total reflection from the surface of the
inner sphere as a medium that is electromagnetically less dense than ice.
This also accounts for the fact that hailstones of fixed diameter with a
thicker ice shell may reflect a power several times lower toward the radar
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set. For instance, at b 1 cm, = 0.86 cm, h = 0.3 and 0.1 cm; b = 0.5

cm, A = 0.4 cm, hsh = 0.3 and 0.5 cm; b1 = 0.25 cm, A = 0.6 cm; hsh = 0.05 and

0.02 cm.

2. For wavelengths substantially exceeding the hailstone diameter, a

monotonic decrease of a 0 with decreasing thickness of the ice shell is observed.

3. The maximum value of a0 of a hollow hailstone with a fixed diameter

and thickness of the ice shell is reached mainly at the same wavelength as

in the case of a solid hailstone. Only in the case of very thin shells is the

wavelength Xmax at which the maximum a0 is reached somwhat lower. Thus,

while for b1 = 0.5 cm at hsh = 0.3 cm Xmax = 0.6 cm, in the case of hsh = 0.1

and 0.05 cm, Xmax = 0.4 cm, or if for b1 = 2.5 cm at hsh = 0.05 cm Xmax = 0.4
max 1 sh max

cm, then at h = 0.02 cm a = 0.2 cm.

4. For the same thickness of the ice shell, a larger a0 does not always

correspond to a hailstone of larger diameter. For example, at hsh = 0.1 cm

and X = 0.6 cm, a0 of a hailstone with b1 = 0.5 cm is six times as large as o 0

of the hailstone with bI = 1 cm. This shows that, as in the case of a solid

hailstone, the dependence of the radar scattering on the diameter of a hollow

hailstone is expressed by a sharply oscillating function.

5. The effective attenuation area 02 of a hollow hailstone may be greater

than that of a solid hailstone of the same size. This takes place, for

example, at bI = 1 cm, X = 0.86 cm, hsh = 0.7 cm; b1 = 0.5 cm, X = 0.86 cm,

hsh = 0.3 cm; b = 0.25 cm, A = 0.4 cm, hsh = 0.1 cm.

TABLE 5.18. o0 AND a2 VALUES OF A HOLLOW HAILSTONE OF 0.5 CM RADIUS. /251

°- th at h sh

S0. 0,3 0.1 0.05 0,5 0,3 o1 0,05

0,4 4,36 0,84 4,53 2,96 2,61 3,43 4,53 2,98
0,6 11,95 8,36 4,22 2,29 1,91 1,54 3,83 2,28
0,86 8,92 6,81 1,07 1,4. 10-2 3,74 4,73 2,77 1,23

3,2 0.38 0,80 5,6. 10-2 1,6. 10-2 0,48 0,40 9,8. 10-1  3, I 10-2

5,6 6,3 10-2 5,5- 10-2 1,6. 10-2 5,1 - 10-3 5,3.10-2 4,7 . 10-2 1,5- 10-2 5,4 10-3
11,0 4,6. 10-3  4,1 - 10-3 1,4. 10-3 4,7 - 10-4 4,4 10-3 4,0 10-3 1,7. 10-3 8,4 10-4

17,0 8,1 . 10-4  7,3. 10-4  2,5 • 10-4 8,6. 10-5 1,3. 10-3 1,2. 10- 3  6,7. 10-4 3,8. 10-4

Commas indicate decimal points.
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TABLE 5.19. a0 AND 02 VALUES OF A HOLLOW HAILSTONE OF 0.25 CM RADIUS.

s at "sh 11 at h
k cm

0,25 0,1 0,05 0,02 0,25 .0,1 0,05 0,02

0,2 4,36 1,68 4,53 1,58 2,61 1,19 4,53 2,55
0,4 5,87 4,11 4,54 0,11 2,93 4,75 3,28 1,00
0,6 1,52 0,46 9,3 . 10-3 5,8. 10-2 4,31 3,40 1,91 0,38
0,86 0,58 1,11 0,40- 5,1. 10-2 3,27 2,22 0,81 0,13
3,2 3,8. 10-2 2,4. 10-2 1,0. 10-2 2,2. 10-3 3,1 10-2 2,1 10-2 9,4 . 10-3 2,6. 10-3
5,6 4,3. 10-3 2,9 .10-3 1,3. 10-3 3,0. 10-4 4, 10-3  3,0. 10-3 1,7. 10-3 6,3. 10-4

11,0 2,9. 10- 4  2,0. 10-4  9,0. 10-5 2,1 .- 1" . 7,5. 10-4 6,4. 10-4 4,5. 10-4 2,3 - 10-4
17,0 5,1 . 10-5 3,5. 10-5 1,6. 10-5 3,8.10-5 3,9. 10- 4  3,5 - 10- 4  2,6. 10-2 1,4. 10-4

Commas indicate decimal points.

A similar phenomenon is observed in the dependence of 0a on the thickness /252

of the ice shell. Thus, at b = 1 cm and X = 0.6 cm, 02 at hsh = 0.1 cm is

greater than at hsh = 0.5 cm and at X = 0.86 cm the attenuation of a hollow

hailstone of 1 cm radius with an ice shell 1 mm thick is nearly the same as
that of a solid hailstone.

6. For wavelengths considerably exceeding the hailstone diameter, an
increase in the thickness of the ice shell results in an increase of a2.

7. For X > 0.86 cm at a fixed hailstone thickness (hsh = 0.1 cm), to

a larger size b of the hailstone there corresponds a larger value of

attenuation a2, but as for example at X = 0.6 cm, a2 at bl = 0.5 cm is larger

than at bI = 1 cm.
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CHAPTER 6. /253

SCATTERING AND ATTENUATION OF MICROWAVES BY A SET OF
HYDROMETEORIC PARTICLES

§ 6.1. Physical Parameters of Hydrometeors

In order to allow for the influence of hydrometeors on the operation of

microwave and submillimeter radar stations, and for many other purposes, in

addition to the electromagnetic parameters of hydrometeors (see Chapter 4), it

is necessary to know their geometrical, temporal, probability and other

physical characteristics.

According to the classification adopted in [202-204, 158, etc.] 97 all the

precipitation falling on the Earth's surface from clouds is subdivided into

types, as shown in Figure 6.1. On the right of this figure, the international

symbol is given for each type. We will give a brief description of the major
ones.

Rain - precipitation in the form of water drops of different sizes, from

0.5 to 7 mm in diameter. Rain falls from cumulus rain clouds, stratified

rain clouds and sometimes from altostratus clouds. The physical parameters

of an individual drop are given in § 5.1.

Drizzle - precipitation consisting of a large number of fine drops less

than 0.5 mm in diameter. Drizzle falls from stratified and strato-cumulus

clouds. The rainfall intensity of a drizzle does not exceed 0.25 mm/hr, and

the falling velocity of the drops in still air is 0.3 m/s.

Hail - precipitation in the form of spherical particles or pieces of ice

(hailstones) from 5 to 50 mm in diameter, sometimes larger, falling individually
or in the form of irregular aggregates. Hailstones consist only of layers of

transparent ice not less than 1 mm thick, alternating with semitransparent

layers. Hailstones are formed in cumulus rain clouds as the result of fusion

of supercooled water drops with grains of sleet and their freezing. The /254

largest hailstones are formed by the coalescence of finer ones.

The physical parameters of an individual hailstone and its layered

structure were discussed in § 5.1.

Snow - precipitation falling in the form of snow and ice crystals of most

diverse shapes, frequently clustered into flakes of large size. The physical

parameters of ice crystals and snowflakes were indicated in § 5.1.

97this classification is in accordance with the definitions adopted in 1956 by

the Committee of the World Meteorological Organization on the Study of Clouds

and Hydrometeors, and published in the International Cloud Atlas.
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The definitions of the remaining types of precipitation may be found in
the works indicated above.

atmospheric' precipitation

liquid  mixed

solid

hail rain es

Figure 6.1. Classification of Precipitation.

In addition to liquid and solid precipitation, mixed precipitation
consisting of a mixture of different types of precipitation falling
simultaneously (Figure 6.1) frequently occurs, for example, rain with drizzle,
snow with rain, ice pellets and rain, etc.

Depending on the physical conditions of formation, duration and
intensity,-precipitation is divided into 3 types [202-204, etc.].

Continuous, falling from a system of frontal, stratified rain clouds and
altostratus clouds. It is of long duration and of medium intensity; it covers
large areas simultaneously; it falls in the form of either medium size rain drops,
or snow, or both (wet snow).

Showers, usually falling from cumulus rain clouds in the form of rain,
snow, sleet or hail.

It is frequently marked by a high intensity; begins suddenly and lasts a /255
short time, but resumes frequently; it covers a small area. Its precipitation
is frequently associated with hail and squalls.

Drizzling precipitation falling from thick stratified and strato-cumulus
clouds in the form of drizzle, finest snowflakes or ice needles. It is formed
chiefly within the stable homogeneous air masses.
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Individual characteristics of clouds as a function ofithe type of

precipitation and conditions of their formation are presented in Table 6.1,

after the data of G. Mann [239].

One of the most important characteristics of precipitation that permits a

study of its radar properties is the distribution of the particles with size.

This distribution may be represented in different ways. The most common

consists of frequency diagrams of particles of different sizes. In constructing

these diagrams, the diameters di of particles with a certain fixed increment

Ad (di = dmin + iAd, i = 0, 1,..., max; dmin , d are respectively the minimum

and maximum particle diameters in the spectrum) are plotted along the abscissa

axis, and the ratio of the number of particles Ni per unit volume of air with

a diameter between d. and d. + Ad to the quantity Ad is plotted along the
Ad

ordinate axis at the point with abscissa di + - Because of a change in the

values of n. = i from one interval to the next, the diagram has a stepwise1 --

appearance.

Sometimes it is preferable to deal, not with an absolute, but with a

relative number of particles, and for this purpose, in plotting the free

particle frequency diagram, fi is plotted along the ordinate axis instead of

1 N.
i NAd

where N is the total number of particles in the selected volume:

mIx

N=I Ni. (6.1)
1=0

For a large number of particles (N > 1000), it is possible to obtain a

smooth, continuous size spectrum, i.e., a certain curve. The equation of this

curve in the form n = n(d) or

f= f (d) " ( d)N (6.2)

is usually called the function (law) of particle distribution with diameter

(size) .

Let us note at this point that in the case of a continuous spectrum, the

expression for N in formula (6.2), in contrast to (6.1), has the form

98In probability theory, these functions are called differential distribution

functions (see [241], p. 78).
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N = n (d) dd.
dmin

Frequently, to simplify various theoretical investigations, it is assumed that
d . = 0 and d = .min max

If we want to switch to the distribution functions and to n(r) of a /257
random quantity r related to the previous d by

r = (d),

it is necessary to transform n = n(d) by using the formula [240]

n(r)= S Ir - (d)] n (d) dd, (6.4)

where 6(x) is the delta-function.

In the special case of a linear transformation of the form r = kd, where
k is a constant, expression (6.4) becomes:

nk1 ( ") (6.5)

If variable r is treated as the particle radius, substituting k = 1/2 into
relation (6.5), we obtain

n (r)= 2n (2r). (6.6)

Formula (6.6) indicates the law of transformation of the particle diameter
distribution function to the particle size distribution function. Similar
relations will apply to the probability density function f(d). To obtain, it
suffices to replace the symbol i by f in expressions (6.4)-(6.6). In addition
to the differential functions n = n(d) and f = f(d), the integral particle
size distribution functions F = F(d) are frequently used in practice. As an
example, we will give the rain water content distribution function

d

F (d) z On dsn(d) dd, (6.7)
dmin

characterizing the part of the water mass corresponding to drops with a
diameter no greater than d per unit volume of air.

From the integral representation (6.7) and the analogous rain water
content distribution with radii r we have the following equality for the function
F(r):

F (r) = F (2r),
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from which it follows that the integral distribution functions, in contrast
to differential distribution functions, are formed directly by substitution
of the variable.

TABLE 6.1. AVERAGED CHARACTERISTICS OF PRECIPITATION- /256
-PRODUCING CLOUDS AFTER [239].

Type of o XU > -)4 0

precipitation 4 -
P  -

*HO 0 U )4J~ 7)
-4 -4J (d 0 0

1. Precipitation near the
Earth's surface
a) Snow

light shower 850 1750 -9.6 - 0.03 7
light steady 800 2400 -5.7 - 0.10 26
heavy shower 600 2000 -5.6 -- 0.8 11
heavy study 500 2550 -2.6 -- 1.3 17

b) Rain formed from
snow
light shower 1000 3250 +2.6 -15.0 0.14 5
light steady 1150 3050 1.0 -14.6 0.2 26
heavy shower 950 2850 6.4 -13.7 1.0 17
heavy steady 750 3400 4.2 -13.5 2.0 36

c) Rain near the
ground (of un-
determined origin)
light shower 1600 1900 +0.8 -8.0 0.4 10
light steady 1400 1900 3.1 -7.2 0.6 27
heavy shower 1200 2050 5.4 -9.0 0.7 28
heavy steady 500 3150 3.8 -8.8 1.4 14

d) Light precipitation
rain with drizzle 500 1400 +5.5 -0.8 - 19
drizzle 1200 2150 3.6 -8.3 -- 79
individual raindrops 2600 1200 2.7 -3.3 - 9

2. Precipitation observed
above, without precipita-
tion on the ground

trails of precipita- 3200 1150 -11.6 -14.8 - 93
tion

snow 700 2300 -5.3 -17.1 - 61
drizzle 350 850 +1.1 -2.6 -- 26
ice crystals 3300 1600 -8.1 -17.9 -- 35
heavily wetting
clouds containing no
ice crystals 1750 1600 -2.7 -2.7 - 21
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For the practice, in addition to the particle size distribution functions
themselves, of definite interest are also certain characteristics of the
range of determination of their argument, such as the mean arithmetic
diameter dl, mean square diameter 2, mean cubic diameter d3' the most probable
or modal diameter dmod, the diameter of the drops making the maximum contribu-

tion to the water content dw, the median dmed, etc. As parameters, they may
also enter into more complex characteristics of hydrometeors, such as for
example the water content W, defined by the expression W = F (dmax

max

2 ~3
W = 2 Nd.

3 3

We will consider specific expressions (particle frequency diagrams) for
the particle size distribution functions. Considering their further use in
§ 6.2-6.4, we will concentrate most of our attention on precipitation.

The Laws-Parsons' distribution was given [242] in the form of the distribu-tion of the water volume formed by raindrops of diameter d falling on the
ground. 99 From this distribution, it is easy to obtain the function n(d) by
transformations:

M(d)
S(d) d = 0,291 (d)d3 ' (6.8)

where v(d) is the velocity of the raindrop at the Earth's surface in m/s
(Tables 5.3, 5.4); d is the diameter in cm, Ad is the interval of diameter
measurements in cm; I is the precipitation intensity in mm/h; n(d) is the
raindrop size distribution in m 3; M(d) is the part of the total volume of the
water falling on the ground formed by drops of the interval Ad ( a dimension-
less quantity, Table 6.2).

The Marshall-Palmer distribution [243] gives the raindrop size distribution
function in the form

nt (d)= 0,08 exp [-Bd] cm-4, (6.9)

-0.21 -1
where B = 41 I , cm , and I is the rainfall intensity in mm/h.

Comparing distribution (6.9) with (6.8), Marshall and Palmer [243] come
to the conclusion that their distribution satisfactorily describes the
experimental data of Laws and Parsons if one neglects the tendency toward
a slight overestimation of the number of fine droplets for which Bd < 4.5.

99 It would be more accurate to say "drops of rain with drizzle." However,
strictly for the sake of brevity, the word "drizzle" may be admitted herein-
after.
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Best's Distribution. Having analyzed a large number of experimental data
[244, 242, 245-247], A. Best found [247] that most observations may be
described with the aid of the integral function (6.7) of the water content:

F(d)=1-exp a ]1 (6.10)

by varying the parameters a and m. Switching from the integral function to
the differential function n(d), we have

S(d)md exp _-± (6.11)

where W is the rain water content per 1 cm3 of air, W = 61f g/cm3; a = aIB cm,
and I is the rainfall intensity in mm/h.

TABLE 6.2. M(d) FOR DIFFERENT I. /259

; mm/h

d cm
0,25 1,25 2,5 12,5 25 50 100 150

0,050 0,28 0,10 0,07 0,03 0,02 0,01 0,01 0,01
0,100 0,50 0,37 0,28 0,12 0,08 0,05 0,04 0,04
0,150 0,18 0,31 0,33 0,25 0,18 0,12 0,09 0,07
0,200 0,03 0,14 0, 19 0,25 0,24 0,20 0,14 0,12
0,250 0,01 0,05 0,08 0,17 0,20 0,21 0,17 0,14
0,300 - 0,02 0,03 0,10 0,13 0,16 0,18 0,18
0,350 - 0,01 0,01 0,04 0,08 0,11 0,15 0,16
0,400 - - 0,01 0,02 0,03 0,07 0,09 0,12
0,450 - - - 0,01 0,02 0,03 0,06 0,08
0,500 - - - 0,01 0,01 0,02 0,03 0,04
0,550 - - - - 0,01 0,01 0,02 0,02
0,600 - - - - - 0,01 0,01 0,01
0,650 - - - - - - 0,01 0,01

Commas indicate decimal points.
Note: The tabulated data were calculated every Ad = 0.050 cm
with the exception of the first interval from 0.00 to 0.075 cm.
In all the other cases, the diameter d indicated in the table
corresponds to the middle of the interval.

Having treated the experimental data of different authors, Best first
established the values of the parameters m, a, B, 6 and f for each of them
(Table 6.3), and then, after averaging them again (without considering
observations made on the Hawaiian Islands) over all the observation sites, he
obtained:

m =2,25; a= 0.130 cm - = 0.232;

-=6,7 10-8g/cm: f=z0.846. (6.11a)
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The distribution of the number of dropsN i in 1 m
5 of air, belonging to

the corresponding interval of change in diameter d, calculated from formulas
(6.11), (6.11a) and (6.3) is shown in Table 6.4.

TABLE 6.3. MEAN VALUES OF THE PARAMETERS OF DISTRIBUTION /260
FUNCTION (6.11) BASED ON EXPERIMENTAL DATA OF VARIOUS AUTHORS.

Observation Author m a cm 6*10 f
site

Germany (1904) Lenard 2.59 0.142 0.272 6.1 0.840

USA Laws et al. 2.29 0.125 0.199 7.2 0.867

Canada Marshall et al. 1.85 0.100 0.240 7.2 0.880

Ayniles* Laird 2.49 0.188 0.203 7.4 0.845

Shuberines* '1 Gemens 2.29 0.156 0.209 5.9 0.816

Ost-Khill* W Jones 1.99 0.138 0.269 6.5 0.829

*Translator's Note: Correct spelling of these words unknown.

Table 6.5 gives a and W as a function of I.

Litvinov's Distribution. On the basis of experimental data obtained in

the upper Baksanskaya Valley on the slopes of Mount El'brus and in the
Alazanskaya Valley, I. V. Litvinov [248-250] came to the conclusion that the
size distribution function of drops in the rain is not uniquely determined by
the intensity I, but substantially depends on the origin of the rain.100

According to their origin, rains are divided into four groups:

1) Rains formed as. a result of the melting of snow grains and heavily
rimed particles (rains from graupel);

2) rains formed by the melting of unrimed and slightly rimed

solid particles (rains from unrimed snow);

3) rains formed by the melting of medium-rimed particles (rains from

rimed snow);

4) rains formed by the melting of hail (rains from hail).

1QQ1. V. Litvinov considered only the case of formation of rain from the solid

phase.
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TABLE 6.4. DISTRIBUTION OF NUMBER OF DROPS PER 1 m3
OF AIR AFTER [247].

1, mm/h
Interval I,

d,mm 0,5 1,0 2 o 10.0 25,0

0,00--0,25 1250 1585 2136 2685 3369 4538
0,25--0,50 160 208 287 364 461 625
0,50--0,75 54 74 108 140 180 248

0,75--1,00 22 33 52 71 94 132

1,00--1,25 9 16 28 40 55 80

1,25-1,50 3,55 7 15 23 34 52
1,50--1,75 1,27 3,27 8 14 22 35
1,75--2,00 0,41 1,37 4,33 8 14 25
2,00--2,25 0,11 0,53 2,20 4,87 9 17

2;25-2.50 0,03 0,19 1,07 2,76 6 12
2,50--2,75 0,01 0,06 0,49 1,52 3,60 8
2,75--3,00 -- 0,02 0,21 0,81 2,21 6
3,00--3,25 - 0,004 0,09 0,41 1,32 4,03
3,25--3,50 - - 0,03 0,20 0'77 2,74

3,50--3,75 - - 0,01 0,10 0,43 1,83
3,75--4,00 - - 0,004 0.04 0,24 1,20

4,00--4,25 - - - 0,02 0,13 0,77.
4,25-4,50 - - - 0,01 0.06 0,49

4,50--4,75 . - - 0.003 0,03 0,31.
4,75--5,00 - - - 0,001 0,015 0,19
5,00--5,25 - - - 0,007 0,11
5,25--5,50 - - - 0,003 0,06
5,50--5,75 - - -- 0,001 0,04
5,75-6,00 - - - 0,001 0,02
6,00--6,25 - - - - 0,011

6,25--6,50 - - - 0,006
6,50--6,75 - -- - - 0,003
6.75--7,00 - -- - - 0,001

Commas indicate decimal points.

TABLE 6.5. VALUES OF a AND W IN EXPRESSION /261

(6.11) FOR DIFFERENT I AFTER [247].

I, mm/h... 0.5 1.0 2.5 5.0 10.0 25.0

a mmnn....... 1.107 1.300 1.608 1.888 2.218 2.743

3 3
W mm3/m3 .. 37 67 145 261 470 1020

The spectra of raindrops of all the groups enumerated above differ from

one another. Thus, rains from graupel have a much greater number of fine

droplets than rains from unrimed snow. Moreover, dmax in rains from graupel

is much smaller than in rains from unrimed snow. The parameters of the spectral

distribution of drops in rains from rimed snow occupy an intermediate
position. In contrast to rains of the first three groups, rains from hail are

marked by a high intensity and a short duration, occur in separate showers
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lasting not more than 30 min, cover a small area and are distinctly local in
precipitation character. Rains from hail are characterized by large droplets.
The intensity of rains formed by the melting of snow changes slowly with time,
whereas the intensity of rains from hail changes very abruptly.

Analysis of measurements showed [248-250] that the functions of Marshall-
-Palmer (6.8) and Best (6.11) adequately describe only rains from rimed snow
and are unsuitable for describing rains from graupel or unrimed snow. For
rains from hail, a good approximation of the experimental data is achieved
with the aid of function (6.11) with the following parameter values: a = 0.288
0.31
I .31cm; m = 2.82;

W = 6.45 - 10-8 I0.7g/cm 3

Characterizing the rain spectrum as a function of rain's origin, Litvinov /262
introduced the distribution function

n (d) = A exp(--Bd) (612)

with the parameters from Tables 6.6, 6.7. It was thus found that the function

n (d) == Ld exp (pd), (6.13)

previously proposed in [251] by Ye. A. Polyakova and K. S. Shifrin, also
satisfactorily describes the distribution of drops with diameters above 1 mm
in range of different origins if L and B are taken from Tables 6.6, 6.7. At
values d < 1 mm, a deviation of the theoretical data from the experimental
ones is observed.

TABLE 6.6. VALUES OF THE PARAMETERS IN DISTRIBUTIONS
(6.12), (6.13) FOR RAINS FROM SNOW.

3
Origin of -4 2 -6 -1Origin of A cm B cm L cm 6 cm

rain

From graupel 0.013310.4 90.431-0.24 64.51-0.5 69.51-0.27

From rimed -0.31 -0.29 -0.2
snow 0.009 65.771 11.751 48.71

From unrimedFrom unrimed -5 -0.4 - -0.41 -0.18 -0.19
snow 638 * 10 I 57.861 2.831 40.11

Kelkar's Distribution. On the basis of an analysis of a large number of
rains in India during August, September and October 1956, V. Kalkar [252-254]
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obtained the distribution of drops with size for range with intensities from

0.2 to 34 mm/h (Table 6.8).

TABLE 6.7. VALUES OF THE PARAMETERS IN DISTRIBUTIONS

(6.12), (6.13) FOR RAINS FROM HAIL.

4 3-6 -1
I mm/h A cm B c 2 L cm cm

B cm

1.76 602- 10 - 5  46.48 8.7 18.4

4.28 186- 10- 5  45.53 1.0 11.8

9.33 123 10- 5  17.14 0.55 9.4

23.0 11 10- 5  13.84 0.372 8.0

It is evident from the table that as I increases, the spectrum shifts

toward larger diameter intervals, and a marked increase in the number of

drops whose diameter exceeds 1 mm is observed. For I > 13 mm/h, the

distribution curve has two maxima: the first at d < 1 mm, and the second at

d between 1.25 and 1.50 mm. Also observed is an anomalous increase in the

number of fine droplets at I = 35 mm/h.

Having treated these data by the least squares method, Kalkar found that

Best's function (6.11) will agree with them satisfactorily if one assumes that /264

in addition to a and W, m also depends on the intensity (Table 6.9).

An approximation of the numerical values of a and W leads to their

dependence on I, mm/h as follows:

a=O0,1 10,'17 6  m,
,1 O- g/cm (6.14)

W= 7.1 - 108 1o8 g/cm

It is interesting to note that expressions (6.14) are rather close to the

analogous expressions obtained by Marshall and Palmer, Laws and Parsons and

Best [see Tables 6.3, 6.5 and expressions (6.11a)]. In addition, Kalkar

obtained expressions for the different parameters of the spectrum:

a) for the mean arithmetic diameter: dl = 0.63 I0. 2 5 mm;

b) for the modal diameter dmo d = 0.63 mm (0.50 to 0.75 mm) for all I;

c) for the mean number of drops of all sizes per 1 m
3 of air:

N 282 + 220/,

etc.
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TABLE 6.8. AVERAGE NUMBER OF DROPS IN 1 m OF /263
AIR AFTER [254].

Interval I, mm /h

d, mm 0,20 0,33 0,16 0,57 0,64 0,76_ 0,87 1,1 1,5 1 1,9

0,00-0,25 80 22 - 34 44 66 40 17 - -
0,25-0,50 125 67 49 69 81 55 41 51 46 590,50-0,75 25 85 111 82 123 99 89 83 126 1360,75-1,00 8 19 34 41 47 34 70 60 92 761,00-1,25 2,7 4, 1 3,5 8 8,3 8 13 17 28 311,25-1,50 1,5 1,4 1,4 2,8 2 2,9 3,9 6,2 6,9 141,50-1,75 0,03 0,2 0,8 1,2 0,6 1,8 1,5 2,4 2,2 3,81,75-2,00 -- 0,2 0,3 0,3 0,5 1,2 0,6 1,2 1,7 1,52,00-2,25 - 0,2 0,2 0,1 0,2 0,5 0,08 0,2 1,9 0,92,25-2,50 0,1 0,04 0,1 0, 1 0,72,50-2,75 0,06 0,04 0,04 - 0,42,75-3,00
3,00-3,25
3,25--3,50
3,50-3,75
3,75-4,00

Total no. 242 198 200 238 307 269 259 238 305 323
of drops

Interval I, mm/h
d, mm

3

2.3  
3,5 4.1 4,6 5,4 6,2 8,6 9,9 13,0 18,0 34,0

0,00--0,25 - - - 19 - - - 5 - - 5920,25-0,50 54 50 29 60 15 66 - 60 18 32 5610,50--0,75 110 85 72 130 96 141 37 121 104 94 3880,75-1,00 180 93 168 107 85 124 47 83 74 55 1181,00-1,25 79 100 88 101 87 108 123 76 85 88 105
1,25-1,50 29 42 38 72 59 72 98 80 120 128 1561,50-1,75 5,5 9,4 8,8 8,6 22 30 47 52 69 70 1171,75-2,00 1,9 2,11 6,8 2,7 14 8 19 21 27 52 1002,00--2,25 0,4 0,5 1,4 0,2 5,1 1,0 1,6 7 12 17 512,25-2.50 0,08 0,2 0,2 0,1 0,4 0,5 0,9 4,5 5,8 7,2 232,50-2,75 - 0,08 0,1 - 1,0 1,0 4,4 102,75--3.00 - 0,1 0,3 - 1,7 1,4300-3,25 0,2 - - 0,1 0,1 0,43,25--3,50 0,9 -
3.50-3.75 - 0,9
3,75--4,00 0,1 - -

Total no. 460 3S2 402 501 383 552 374 511 516 546 2222
of drops

Commas indicate decimal points.
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TABLE 6.9. PARAMETERS n, a AND W IN DISTRIBUTION (6.11)
FOR RAINS AFTER KALKAR [254].

Interval of 8 3 3
change in I, mm/h n a, cm W*10 m /m

I, mm/h

0.0-0.6 0.40 1.93 0.091 3.1

0.6-1.1 0.83 1.70 0.097 5.6

1.1-3.8 2.45 1.94 0.118 15.6

3.8-7.3 5.10 4.0 0.146 29.6

7.3-20.0 12.0 3.67 0.180 59.0

20.0-41.0 34.0 3.43 0.188 157.3

Polyakova's Distribution. On the basis of an analysis of 40 cases of

rain precipitation at Voyeykovo (Leningrad province) and 19 cases in the region

of subtropics, at the Chakvi agrometeorological station near Batumi in the

course of 4 summer seasons of 1953-1955 and 1957, Ye. A. Polyakova [255] found

that the distribution functions of raindrops with radius are:

n (r)= Are-r, (6.15)

n (r)= Le- r, (6.16)

2 2

where A = 0.0066 a cm 6 , = 635 3 cm, L = 0.08 a3 cm , 6 = 391 T
-1

cm-, a is the attenuation coefficient of visible light in the rain zone in

cm-1 and I is the rainfall intensity in cm/s, are valid for r > r0 = r0(I). /265

The dependence of r0 on I is shown in Table 6.10.

TABLE 6.10. FUNCTION r0 = r0 ().

Interval of
change in I,
mm/h 0.3-3 3-5 5-10 10-15 15-25 24-40 40-60

r0 , mm 0.2 0.25 0.3 0.35 0.40 0.45 0.55

As stated by its author, the method used in [255] does not permit a

theoretical calculation of the distribution curve for r < r0.
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The paper [255] also notes that no geographical differences in the
microstructure of the rains was observed.

Joss's Distribution. In a study of the size distribution of raindrops at

Locarno, J. Joss et al. [256, 257] found that a function of the form

n (d)= Me - Id (6.17)

with parameters from Table 6.11 is suitable for describing rains of different

types.

It is interesting to note that values of m and B for a widely distributed
rain (Table 6.11) practically coincide with the corresponding quantities in
the Marshall-Palmer distribution function (6.9).

TABLE 6.11. PARAMETERS M AND B OF DISTRIBUTION (6.17).

Type of M cm-4  B cm-1

rain

Drizzle 0.3 571-0.21

Steady rain 0.07 41I0.21

-0.21
Thundershower 0.014 301

Donaldson's Distribution [258] is given by expression (6.17) with

M1 -70 cm'- 4, '3=411--°.e  (6.18)

and is applicable to drizzle.

If this distribution is compared with the Marshall-Palmer distribution

(6.9), it is easy to see that it differs from the latter in the preexponential
factor (it is 875 times greater!). It should be noted that this distribution
was obtained by Donaldson after only a few observations.

Distributions Proposed by Other Authors. In addition to the most common

distribution functions enumerated above, the literature contains data on

other n(d) functions as well, obtained on the basis of experimental studies /266
of rains in different geographical latitudes at different times of year.
These functions are extremely diverse.

Thus, Best proposed in [259] a classification of rains according to 9

types: A, B, C, D, E, F, G, H, J (Table 6.12). Here A and B are ordinary

rains falling over large areas; C is a rain with breaks in the cloud and solar
radiance; D is a brief thundershower, E is a sudden rain from small light

clouds under conditions of a windless clear atmosphere; F is a heavy rain
similar to a hail shower; G, H, J is the heaviest rain with frequent brief
interruptions.
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TABLE 6.12. NUMBER OF DROPS PER 1 m3 OF AIR IN DIFFERENT
TYPES OF RAINS AFTER [64, 70].

Type of rain

d, mm A B C D E F

0,5 28,5 476 752 61,4 3,33 0,0 .323 245 47,6
1.0 71,8 512 30,8 25,6 59,7 12,8 134 108 333
15 31,0 27 11,4 14,0 21,5 9,52 66 68;4 95,2
2,0 3,13 22 31,2 15,6 7,2 23,4 46,1 21,6 31,2
2,5 2,76 - - 4,0 0,96 0,0 28,3 21,5 .0,0
3,0 - - 7,2 0,0 25,3 10,2 17.6 0,0
3,5 - - - - 3,83 0,0 3,35 0,0 0,0
4,0 - 4,88 5,75 2.3 0,0 0,0
4,5 - - 0,0 - - 11,3 22,5
5.0 - - - 2,71 -- -

.I, r t./h 2,46 3,6 4.0 6,0 15,2 18,7 22.6 31,3 43,1

Commas indicate decimal points.

R. Wexler and D. Atlas [260] found that the raindrop distribution
function (6.9) proposed by Marshall and Palmer is unsuitable for describing
fine droplets. A better suited function for fine droplets is (6.17), with
the following parameters: M = 0.01 cm-4 , 8 = 20 cm-1 for d < 1 mm, I = 0.8 to
1.0 mm/h and M = 0.01 cm 4 , B = 15 cm-1 for d < 1.5 mm, I = 3.85 to 5.0 mm/h.

Measurements by E. Mueller and D. Jones [261] and M. Fujiaara [262]
showed that the Marshall-Palmer distribution (6.9) cannot be used for showers.

Instead of an exponential decrease with size, the concentration of drops
increases to a maximum, then decreases exponentially. Thus, the function n(d)
may in this case be given by the expression

nd) iVNe'", d 4 0.15 cm,

NA.e-d, d ' 0,15 cm, (6.19)

The mean value of 8 is 4.3 (variation range 0.6-7.1), p = 3.5 (range 2.6-4.6). /267

D. Atlas [149] selected a simple linear dependence of the total number of
drops N in 1 m3 on the rain intensity (in mm/h):

N= 100 + 7 I.

From this it is easy to determine the values of coefficients n1 and n2 (in cm- 4 )

in expression (6.19):

N, -3,05 10-6 - 2,13x10-71,
, - 0.37 -- 0.02571.
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J. Imai [263] found on the basis of a study of the spectra of rains

falling in Japan that the quantity d3n(d) has a Gaussian distribution.

M. Sivaramakrishnan [264] studied the size distribution of drops in thunder-

showers in India. Using the similarity of the relationships between the

reflectivity, water content, diameter of the median volume and rain intensity

obtained by Marshall and Palmer, he came to the conclusion that on the average,

function (6.9) adequately approximates the experimental data.

Analyzing the experimental data of [251, 242], Ye. M. Sal'man [65] obtained

a size distribution function of drops in showers and steady rains starting
with r = 100 um:

n (r) = ar - 2 cm- 4,

where 5120Z
a Cm-

2

[1 - exp (-0,41Z 0o'6 2 )

where Z is the reflectivity factorl 01 (in mm6/m3), related to the rainfall
1.54.

intensity I mm/h by the relation Z = 220 I
1

However, Ye. A. Polyakova in [255], evaluating [242] and her earlier

work [251], indicates the unreliability of the method used in [251] to obtain

statistical material on fine droplets and also the fact that the filter paper

method employed by Laws and Parsons [242] for sampling makes it impossible to

measure drops smaller than 0.3 mm in diameter.

On the basis of radar observations of rains at the Central Aerological
Observatory in the summer and autumn of 1961, A. G. Gorelik and G. A. Smirnova

[266] proposed the distribution function

n(d)--- dbe- P, (6.20)

where N is the number of drops per unit volume (ranging from 100 to 1,000 per

1 m3), b and 8 are parameters (b = 2 to 32; = 50 to 640). Generalizing the

extensive experimental material on rains obtained by the Central Aerological /268

Observatory, the authors of [267, 268] propose the inverse power law

n (d)= =d-P (6.21)

for d changing from 0.15 mm to dmax , where dmax ranges from 0.2-0.3 to 1-1.5 mm.

[268] indicates a difference between drop spectra in continuous precipita-

tion, which is subordinate, in most cases, to the power law (6.21), and drop

spectra in shower precipitation, which is satisfactorily described by the

exponential function (6.9). As noted by these authors, this difference is due

to a different mechanism of enlargement of the drops.

I-1IConcerning the determination of the reflectivity factor see, for example [149].

269



Analyzing the experimental data of a series of studies, the authors of
[269] found that despite the diversity of these studies, it is possible to
give a unique analytical description of the spectra of all rains with the aid
of the generalized gamma distribution

n (d) = Cd' exp (-Pd'), (6.21a)

3 3
where 3 < i < 30, -- < .2 2

D. Deirmendjin [270] used the size distribution function of drops in this
form at N = 103 m- 3, dmod = 0.1 mm, W = 0.495 g/m

3 to study the scattering

properties of hydrometeors.

L. M. Levin [271] showed the possibility of using the following lognormal
law for describing the distribution of raindrops with diameter:

N don (d)= d exp 2

where d0 is the mean geometric diameter of the particles, ranging from 0.56 to

0.64 mm for range with I = 0.5 to 7.5 mm/h; a is the dispersion, ranging from
0.41 to 0.52 for rains with I = 0.5 to 7.5 mm/h.

It was also noted [271] that the distribution function (6.9) and gamma
function [272] adequately approximate a lognormal law over a fairly wide range
(F. Kessler and D. Atlas [273] established that the Marshall-Palmer
distribution is also applicable to the representation of the spectrum of
drops of hurricane showers.

As a rule, the above distribution function of raindrops with size are
the result of averaging over a large number of observations and large areas.
At the same time, depending on various external factors, individual rain
spectra taken simultaneously at different points of the precipitation zone
separated by small distances may differ markedly from one another, as may
samples (Figure 6.2) taken at different times. Moreover, the rainfall /269
intensity I may itself change appreciably in time (Figure 6.3) and (Figure
6.4). In that case, the spectra of the rain depend on the variation of its
intensity with time (Figure 6.5). It is evident that the spectra differ
sharply from one another as its intensity increases and decreases. As I
decreases, the spectra break off abruptly in the large drop portion, while the
spectra during increasing I have a large number of large drops and a com-
paratively small number of fine ones.

Hence, the size distribution functions of raindrops discussed above can
be applied only to rains of constant intensity. However, even in this case
it is necessary to use them carefully, since some were obtained from the basis
of samples of small volume (~ 1 m3). As was shown by E. Mueller and A. Simms
[276], for a sample volume of 1 m 3, the errors in the calculation of the
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intensity and reflectivity of the precipitation on the basis of the spectrum
obtained from the sample may reach 70% or more.

309- a) c)
1, mm/h

20-
o 200 20

o 1110

0 15 16 17 18 19 2th

0 1 2 0 1 2 0 / 2dmm

Figure 6.2. Three (a, b, c) Different Figure 6.3. Change in Rainfall
Spectra of Raindrops (On the Ground) Intensity I with Time on 19 June
of the Same Intensity I = 0.6 mm/h 1951 in the Village of Voyeykovo
After [252]. After [204].

I 12 Let us also note at this point /270

a) / b) that the many distribution functions

t- oo% given in the literature do not provide
/ , o 9o o -o sufficiently reliable statistics on

0g o fine drops. The need for such data is

°° o very perceptible in connection with the
/ development and perfection of submili-

meter radar engineering.

01 to o 0of 0,1 f0 f 01, Distribution Functions of Snow
Particles. A study of the size
distribution of snowflakes of uniform

shape, K. Gunn and J. Marshall obtained
Figure 6.4. Relationship Between [189
Rainfall Intensities (mm/h) at n(d)=Nexp(-Ad), (6.22)
Points Separated by 10 m(a) and
1,200 m(b) From Each Other -2 -0.87 -4
After [274].. where NO = 3.8*10 1 cm , A =

-0.48 -1
= 25.5 I cm , I is the intensity

in mm/h, and d is the diameter in cm of a drop obtained from a molten snow
crystal.

I. V. Litvinov [194] came to the conclusion that the distribution curves

of drops equivalent in mass to snow crystals may be represented by the gamma
distribution proposed earlier by L. M. Levin [272],

d

Nd__ e P , (6.23)S(d) (6.23)
r (a -+l) +l '

271



where r(x) is the gamma function; a and B are parameters related by the

relation B = 292a -0 6 7 . Experimental analysis [194] showed that the a and

N values change from one snowfall to the next over fairly wide limits. Moreover,

a decrease in a with rising temperature was observed for one and the same

snowfall.

On the basis of 42 spectra of snow crystals in different snowfalls,

Abshayev et al. [197] obtained a distribution function of snow crystals with

diameter N ,
n(d) r(exp -

(+ ) +(6.24)

analogous to function (6.23) for drops equivalent to these crystals. Here N is /271

the number of snow crystals per unit volume; d3 is the root-mean-cube diameter;

+ I) It+ 2) + 3) (6.25)

i is a parameter ranging from 0 to 4.

Hail Distribution Functions. Analysis [277] of 30 hail spectra collected

during the spring-summer periods of 1962-1964 on the Mushtinskiy and Sasmarskiy

high-mountain polygons [278, 279] and 8 spectra based on data of [280, 281]
showed that of the 20 cases of hail precipitation, in 15 (28 spectra) a
simultaneous unsymmetric distributions of hailstones with size was observed,
and in 5 (10 spectra), both a one-peak and a two-peak distribution occurred

along the hail path.

One-peak distributions are adequately described by gamma function (6.24)

with v = 0 to 10; half of them correspond to 1 = 2, i.e., to the distribution

obtained by the authors of [271, 283] on the basis of more limited experimental

material.102

As was shown in [279]10 3two-peak size distributions of hailstones always

occur in the central portion of a hail band, and a one-peak distribution is

observed along with a two-peak distribution in one and the same case of

hail precipitation. Moreover, in all the cases of hail precipitation, there

was not a single instance r277] of just a two-peak distribution at any of the

portions along the hail path. The first maximum of the:two-peak distribution

was an average of 3.6 times greater than the second, and the ratio of modal

dimensions of the hailstone spectrum was equal to an average of 3.1. It is

noted in [277] that the second maximum for the above-mentioned 10 spectra

corresponds in the majority of cases to d = 1.1 cm; the ratio of the magnitudes

102 Data on hail concentration N may be found in [278, 279, 282]. Comparison

of these data in [2781 with the data of J. Ryde [139], D. Atlas, R. Donaldson,
F. Ludlam and F. Macklin [282] showed the latter data to be 0.5-1 order of

magnitude too low.
1 0 3 See also [323-325].
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of the maxima changes from one case to another, and a smooth transition from
the one-peak to the two-peak distribution is observed.

The two-peak spectral distribution of hailstones with size is adequately
represented in the form of a sum of two gamma distributions with parameters

11' B1 and p2' 2 2 [277], with l = -1 to 1; 2 = 4 to 8.

The paper [277] indicates the independence of the hail spectra from the
climatic and geographical conditions (Northern Caucasus, Transcaucasia,
England, Canada).

§ 6.2. Effect 6f Multiple Reemissionslon the Radar Characteristics of A Set

of Hydrometeoric Particles

Chapters 2 and 3 developed a rigorous theory of scattering and attenuation /272
of electromagnetic waves by an arbitrary set of homogeneous and nonconcentrically
layered spheres, and also derived expressions for its various electromagnetic
and radar characteristics.

In this section, on the basis of the formulas and expression given in
Chapters 2 and 3, and with the aid of a computer, we will make a partial study
of the effect of the interaction of water drops and homogeneous and inhomogeneous
hailstones on the effective areas of radar scattering and attenuation.

IN

n d ) mn3mn
''

00)

I " 2 3 O 1 2 3d mm

Figure 6.5. Spectral Distribution of Rain of Intensity
1 mm/h (a) and 5 mm/h .(b) after [275]. 1)ICalculated
curve after Marshall and Palmer; 2) Average spectrum;
3) Spectrum of intensity decrease; 4) Spectrum of
intensity increase.

Let the coordinate system XOY0 0 (Figure 6.6) contain 4 homogeneous

spherical particles with diameters di (i = 1, 2, 3, 4); the centers of all of

the particles lie in the plane X 0 YZ O the sphere .of diameter dl being at the

lQiSee also Figure 2.1.
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origin, and the other 3 being separated from it by the same distance i. Other
details of their relative positions are indicated directly in Figure 6.6.

d-

Figure 6.6. Theoretical Model of the Location of Four Spherical
Particles of Different Diameters.

These assumptions were used with formulas (2.82), (2.77), (2.59) and (2.58) /27
to calculate, with an accuracy of not more than 10%, the radar scattering
cross-section a' and attenuation cross-section a2 of the particles for the

following 3 cases (Figure 6.6).

1. All the particles are water drops of different diameters: dl = 1 mm,

d2 = 2 mm, d3 = 3 mm, d4 = 4 mm; wavelength
1 0 51 = 2.74 mm; temperature t = 16*C;

the dielectric constant of water was calculated from formulas (4.13), (4.14),
(4.16), (4.23), (4.24); the distance I between the particles ranged from 1.6
to 50 mm.

2. All the particles were water drops of the same diameter d. = 4 mm (i = 1,
1

2, 3, 4); X = 6 mm; t = 160C, and the dielectric constants of water were
calculated in the same way as in p. 1; 1 = 4.4 to 5.0 mm.

-5 It was assumed equal to the mean square diameter of all the spheres.
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3. All the particles were homogeneous hailstones of the same diameter
d. = 6 mm (i = 1, 2, 3, 4); A = 8 mm; t = OOC; the dielectric constants of ice
1

were chosen from Table 4.33 after Cumming; Z = 6.0 to 50 mm.

For the sake of convenient discussion, the final quantities programmed

for computation were the expressions Z=o o'oj and I2-=o'. oi' ,

where a;i and o2i are respectively the cross-sections of radar scattering and

attenuation by a single particle of diameter di (assuming that the other 3 are

absent), determined from formulas (1.276), (1.274) and (1.288).

Results of calculations of E0 and E2 are shown in Figures 6.7 and 6.8,

from which it is evident that the a0 and a2 curves for water drops and hail-
(i)

stones are oscillatory in character. Moreover, the quantities a = 1 - E.

(i = 0, 2), hereinafter called reemission factors of radar scattering ( i - 0) /274
and attenuation (i = 2)106 tend to zero with increasing 1. The oscillatory

character of the (i ) curves is responsible for the fact that for two distances
Z' and Z" between particles, with 1' >> ", the reemission factors may be
considerably greater at 1 = 1' than at Z Z".

00

0 8 16 2; 32 40 48 mm

Figure 6.7. Dependence of E0 of Four Particles on the

Distance Between Them. 1) Case 1; 2) case 2; 3) case
3.

106 In terms of reemission factors, the effective areas of radar scattering a0

and attenuation 02 of a set of four meteorological particles may be represented

in the form
4V C i+ E U i = 0, 2.

j=1 j=1
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In the calculated range of Z, the largest contribution of multiple
reemission between particlesl07to the a' and a2 values amounts to, respectively:

for case 1, 55 and 38%; for case 2, 59 and 48%; fpr case 3, 37 and 40% of

Soi J and It should be assumed, that as 1 decreases, the maximum of

(i)
C i  increases.

Comparing cases 1 and 2, one can easily note that the reemission factors
for both radar scattering and attenuation for hailstones are an average of 20%
lower than for water drops.

At > Z(0) for and > Z(2) for o' with an error no greater than 6%,
A A 2

the scattering multiplicity may be neglected, i.e., the scattering may be
considered incoherent (Table 6.13).

The curves of Figures 6.7 and 6.8 also show that the reemission factors of

radar scattering in the integral average are greater than E(2) for each of the
cases discussed.

F_2

1,6

iv- -

Between Them. 1) Case 1; 2) case 2; 3) case 3.

Let us know consider the effect of interaction of two nonconcentrically /27
layered hailstones. We will take two completely identical three-layered
hailstones (Figure 6.9) with the following parameters: d = 2 cm; d = 1.6 cm;

1 23

d3 = 0.4 cm; h2 = 0.1 cm = h3 ; medium (1) is ice of density 0.38 g/cm , medium

FiMore accurately, the largest value of Zi
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(2) is ice of density 0.60 g/cm 
3 , medium (3) is ice of density 0.92 g/cm3;

A = 3.2 cm; t = 00 C. We will place them at a distance Z cm from one another as

shown in Figure 6.9. The radar characteristics of each such hailstone have

already been determined in § 5.4 (see Figures 5.40 and 5.41). We will con-

centrate our attention here on the reemission factors of radar scattering

Z(0) and attenuation Z(2) of a set of such hailstones.

TABLE 6.13. VALUES OF PARAMETERS Z' /276

Z(0) (IN THE NUMERATOR) AND (2 )

(IN THE DENOMINATOR) P

Case 30 20 15 10

1 2.7 5,8 8,4 14.6
0,72 .4,8 8,8 13,1

2 6,1 - -

4,7

3 2,7 4,7 5,6 5,8
0,77 2,3 3,5 4,6

(2)

Commas indicate decimal points. O)

Note: Dashes in case 2 signify

that in the calculation range

< 6.25?, there are no x0

values of 1 (i = 0, 2), such Figure 6.9. Theoretical Model of

that the inequality (i) < 20 the Location of Two Nonconcentrically

is fulfilled uniformly for all Layered Hailstones.

S> Z , (i = 0,2).
Results of their calculation from

exact diffraction formulas (3.26), (3.26a),

(2.104), (2.108), etc. (expressed in percent accurately to ±15%) as a function

of the ratio are shown in the form of curves in Figure 6.10. It is evident

that the E(i) curves (i = 0, 2) are oscillatory in character, with an amplitude

tending to zero as the distance between the hailstones increases. The

largest value of Z
(0 ) is 120%, E(2) is 78%, reached at = 1.2. At distances

greater than 6.0, for 2' and 7.6 for o, the multiple reemission of the

hailstones under consideration may be neglected with an accuracy of not more /278

than 25%.
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Figure 6.10. Dependence of Z(0) and E(2) of Two

Nonconcentrically Layered Hailstones on .

Thus, it follows from the above examples that for certain relative

magnitudes of the particle diameters, lstances between the particles, length

of the emitted wave and other factors , the additional total field due to

multiple reemissions may prove to be of the same order as the field of single

reflection, and consequently the radar characteristics of a set of such

particles in the incoherent approximation become substantially inaccurate even

in the case of relatively large distances between them.

Average parameters of the most typical hydrometeors are listed in Table

6.14, compiled on the basis of the data of [81, 278]. It is evident that

> 20 for all of them. The value of in the millimeter and submillimeter

range of radiowaves is close to unity only for clouds and fogs. For pre-

cipitation, it ranges from 7.0 to 5,770. This makes it possible to assume,
with sufficient accuracy for radio meteorology and radar that the scattering

of microwaves of this range by rains, hail and pellets is incoherent.

In the case of centimeter waves, however, the ratio - may be correspondingly

much lower (clouds, fogs, rains), of the same order of magnitude, and much

greater than unity. Therefore, in this range of X, multiple reemission of

particles may prove to have an appreciable effect on the radar characteristics

of hydrometeors.

108For example, the arrangement of the layers in a nonconcentrically layered
hailstone.
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TABLE 6.14. MEAN VALUES OF PARTICLE DIAMETERS d, DISTANCES 1
BETWEEN THEM AND OTHER PARAMETERS OF VARIOUS HYDROMETEORS

0.1 mm < A< mm
Types of Hydrometeors dmM r Id I

Clouds (of all types) .......... 0,008- 1,3 162 . 0,08-0,008 13,0-1,3

Fog:

Thin ..................... 0,01 4,3 430 0,1-0,01 .43-4,3
Medium.............. 0, I 21,0 210 1,0-0, I1 210-21

Rain:
Light (1 mm/h)............. 0,45 70,0 155 4,5-0,45 700-7,0

Moderate (4 mm/h)......... 1,0 123,0 123 10-1,0 1230-123
Heavy (15 mm/h)............ 1,5 130,0 86,6 15-1,5 1300-130

Very Heavy (40 mm/h) ...... 2.1 138,0 65,6 21-2,1 1380-138
Shower (1(0 mm/h)........ 4,0 137.0 34,3 40-4,0 1370-137

Hail........................ 7.9 353 44,7 79-7,9 3530-353
14,2 57,7 406 142--14,2 5770-577

Ice Pellets .................. 3.0 123 41,0 30--3,0 1230-123
5,1 227 40,6 51--5, 1 2270-227
6,3 128 20,3 63-6,3 1280-128

Types of mm < 10mm I c~ )< 10 cm 10 cmrn X < 20 im

Hydrometeors d I d I d I

0,008- 1,3-0, 13 8,10-4- 0,13-0,013 8,10-5- 0,013-0,007
Clouds (of alltypes) 10-4  8, 10-5 4, 10-5
Fog:

Thin............ 0,01-10-3 4,3-0,43 10-3-10-4 0,43-0,013 10-4-5,10-5 0,043-0,021
Medium ......... 0,1-0,01 21-2,1 0,01-0,001 2,1-0,21 0,001- 0,21-0,1

Rain: 5 .10-4

Light (1 mm/h)... 0,45-0,045 70-7,0 0,045- 7,0-0,7 4,5-10- 3-  0,7-0,4
4,5.10- 3  2,3.10- 3

Moderate (4 mm/h 1,0-0,1 123-12,3 0,1-0,01 12,3-1,2 0,01-0,005 0,12-0,06
Heavy (15 mm/h).. 1,5-0,15 130-13,0 0,15-0,02 13,0-1,3 0,02-0,01 1,3-0,6
Very heavy (40

owemm/ mm/h 21-0,21 138-13,8 0.21-0,02 13,8-1,4 0,02-0,01 1,4-0,7
Showe 00mm/h)4,0-0,4 137--13,7 0,4-0,04 13,7-1,4 0,04-0,02 1,4-0,7

Hail............... 7,9-0,79 353-35,3 0,79-0,08 35,3-3,5 0,08-0,04 3,5--1,8
14,2-1,4 577-57,7 1, 4-0.14 57,7-5,8 0,14-0,07 5,8-2,9

Ice pellets......... 3,0-0,3 123-12,3 0.3-0,03 12,3-1,2 0,03-0,015 1,2-0,2
5,1-0,5 227-22,7 0,5--0,05 22,7-2,3 0,05-0,03 2,3-1,1
6,3-0,6 128-12,8 0,6-0,06 12,8-1,3 0,06-0,03 1,3-0,7

Commas indicate decimal points.
Remarks: 1. For hail and ice pellets, the root-mean-cube diameter is
given in the column d, mm. 2. Z are the closest distances between the
particles.
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Let us note also that at - 1, a set of scattering particles (for example,

clouds 1 0 9at x > 10 cm may be regarded as a continuous medium. In this case,
the principal role in the determination of the signal power may be played by
the interference of waves scattered by individual particles.

§ 6.3. Radar Characteristics of Rain Precipitation

Various types of hydrometeors may have a substantial influence on the
propagation of microwaves in the Earth's atmosphere. The associated effects
are used both for studying the atmosphere itself, and for planning and
operating various types of radar equipment.

As is evident from the general radar equation [149, 326], a key role in
the study of all these questions is played by the radar characteristics of the
unit volume of a hydrometeor: the specific effective area of radar
scattering n and attenuation coefficient y given in the incoherent approxima- /27
tion by the formulas:

dmax (6.26)
= n (d)$ (d)dd em- l

dmin

dmax

= 4343. 10" n (d) a2 (d) d d db /kn, (6.27)
dmin

where n(d) is the particle distribution function with diameter (see
§ 6.1),

i (d) are the normalized effective areas of radar scattering
(i = 0) and attenuation (i = 2) of an individual particlell 0

of diameter d,
dmin and dmax are the minimum and maximum particle diameters in the

selected volume.

Chapter 5 analyzed in detail the radar characteristics a0 and a2 of an

individual particle as a function of its temperature, dielectric properties,
size, wave length, and other factors, and in § 6.1, various laws of size
distribution of precipitation particles were discussed.

On the basis of this material, a computer was also used to study the
dependence of n and y of rain on its intensity, wave length of the emitted
wave in the centimeter, millimeter and submillimeter ranges, on the type of

a'9 See Table 6.14.
1-2lDetermined via expressions (1.276), (1.274), (1.288) as follows: a!(d) =
= Td2oi(d).
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distribution function, dielectric and temperature properties of the particles,
minimum and maximum diameters in the particle spectrum, and other factors.
Certain aspects of these problems are dealt with in many publications, a
survey of which may be found, for example, in [46, 149, 64, 189, 204, 284-289,
etc.].

The material presented below is based chiefly on studies made by the
author [289-295].

Effect of Temperature. To determine the effect of temperature t of the
drops on the radar characteristics of rain, calculations were made for n and
y at temperatures from 0 to 40*C, and also for the temperature coefficients
P(t) and *(t), which are defined by the expressions

,S1S C 1180 C

The computations were carried out by using formulas (6.26), (6.27), (1.276),
(1.274), and (1.288) at dmin = 0.05 cm, d = 0.55 cm, using different lawsmin max

n(d) of drop size distribution (6.9)-(6.14). Since the character of the
effect of temperature obtained was the same ±10% for all the n(d) considered,
we will cite (Table 6.15) only the temperature coefficients obtained by using /280
function (6.9).

TABLE 6.15. COEFFICIENTS P(t) AND p(t)
(MARSHALL-PALMER RAINDROP DISTRIBUTION)

(t) at t C , ,(t) at to c

I, i, cm .
mm/h 0 10 30 40 0 10 30 40

0,1 0,1 1,10 1,00 1,11 1,12 1,04 1,02 0,99 0,98
0,4 0,78 0,91 1,10 1,16 0,97 0,99 1,01 1,02
0,8 0,93 0,99 1,08 1,11 1,02 1,00 1,03 1,07
3,0 1,03 1,02 0,99 0,98 1,48 1,19 0,79 0,65

1,0 0,1 1,01 0,97 1,13 1,16 1,01 1,00 1,00 1,00
0,4 0,78 0,92 1,09 1,15 0,99 1,00 0,99 0,98
0,8 0,87 0,95 1,05 1,09 1,00 1,00 1,02 1,04
3,0 1,05 1,02 0,97 0,95 1,23 1,10 0,84 0,71

10,0 0,1 0,93 0,95 1,28 1,20 1,00 1,02 1,00 1,00
0,4 0,80 0,93 1,08 1,13 1,02 1,01 0,98 0,98
0,8 0,88 0,96 1,04 1,06 1,03 1.01 0,98 0,98
3,0 0,97 0,99 1,01 1,02 0,87 0,95 1,03 1,04

30,0 0,1 0,86 0,93 1,12 1,22 1.00 1.00 1.00 1,00
0,4 0.81 0,93 1,08 1,12 1,02 1,01 0,99 0,98
0,8 0.90 0,96 1,03 1,04 1,04 1,01 0,98 0,97
3,0 0,87 0,94 1,09 1,16 0,85 0,94 1,07 1,12

100,0 0,1 0,86 0,93 1.13 1,23 1,00 1,00 1,00 1,00
0,4 0.81 0,93 1,08 1,13 1,02 1,01 0,99 0,98
0,8 0.91 0,97 1,03 1,04 1,04 1,02 0.98 0,97
3,0 0,85 0,94 1,09 1,18 0,85 0,94 1,08 1,13

Commas indicate decimal points.
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It is evident from the table that in the millimeter range of radiowaves,
a temperature change from 0 to 400C causes variations in n and y (An and Ay)
of not more than 25 and 7% respectively.

Analysis of the behavior of An and Ay at other n(d) shows that the
quantities I 1 - (t)l and I 1 - p(t)l in the range A = 1 to 10 mm do not exceed
0.25.

In the centimeter region of A variation, as is particularly evident from
Table 6.16, taken from [45], these variations may increase appreciably, reaching
100% or more in some cases.

The diverse character of the behavior of the radar characteristics of
rain in the millimeter and centimeter ranges of A is mainly due to the
difference in the dependences on t for X > 1 cm and A < 1 cm of the dielectric
constants of water (see Figures 4.11, 4.12) and also to the difference in the
effective areas of radar scattering and attenuation of individual drops
(see § 5.3).

The effect of temperature on the magnitudes of n and y in the submillimeter /28.
range of X variation is much smaller than in the millimeter range. This follows
from the temperature dependences of e of the type of (4.26b) and Figure 4.13.

TABLE 6.16. COEFFICIENT t(t) (LAWS-PARSONS RAINDROP DISTRIBUTION).

I, i cm

mm/h o 10 30 40

0,25 0,5 0,85 0,95 1,02 0,99
1,25 0,95 1,00 0,90 .0,81
3,2 1,21 1,10 0,79 0,55
10,0 2,01 1,40 0,70 0,59

2,5 0,5 0,87 0,95 1,03 1,01
1,25 0,85 0,99 0,92 0,80
3,2 0,82 1,01 0,82 0,64
10,0 2,02 1,40 0,70 0,59

12,5 0,5 0,90 0,96 1,02 1,00
1,25 0,83 0,96 0,93 0,81
3,2 0,64 0,88 0,90 0,70
10,0 2,03 1,40 0,70 0,59

50,0 0,5 0,94 0,98 1,00 1,00
1,25 0,84 0,95 0,95 0,83
3,2 0,62 0,87 0,99 0,81
10,0 2,01 1,40 0,70 0,58

150,0 0,5 0,95 0,98 1,00 1,00
1,25 0,86 0,96 0,97 0,87
3,2 0,66 0,88 1,03 0,89
10,0 2,00 1,40 0,70 0,58

Commas indicate decimal points.
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Effect of Particle Shape. There is a very limited number of papers
devoted to the effect of nonsphericity of drop shape on the radar character-
istics of rain. 1 11

Thus, T. Oguchi [296] found that the error in y due to nonsphericity of
the drops at wave length A = 8.6 mm does not exceed 16%; after measuring the
effective radar scattering area of water drops at wave length A = 5.33 mm,
U. Lammers [297] came to the conclusion that the effect of particle shape
in actual range is smoothed out statistically; I. Kh. Vakser, Yu. I.
Malyshenko, and L. Ye. Kopilovich [298] established that in a rainshower with
I = 50 mm/h for A = 8.6 mm, the error in calculations of radar characteristics
of rain as a result of the hypothesis of sphericity of the drops is 14%, for /282
A = 2 mm it decreases to 7%, and in the submillimeter range, to 5%. In a
moderate rain with I < 10 mm/h, these errors decrease further by a factor of
3.

Effect of the Law of Size Distribution of Drops. Studying the role of
various laws of size distribution of drops, we will strictly adhere to the
classification of rain precipitation given in § 6.1 (see Figure 6.1).

Calculations of n and y of rain precipitation with different n(d) were /283
made on a computer using formulas (6.26), (6.27) at d = 0.51 cm and d . =

max mmn
= 0.05 cm for rain; d = 0.05 cm and dmin = 0.01 cm for drizzle; d = 0.51max mm max
cm and d . = 0.01 cm for rain with drizzle.

min

Figures 6.11 and 6.12 show n and y curves of rains of different intensities
with a drop distribution after Marshall-Palmer (6.9), Best (6.11), (6.11a)
and Kalkar (6.11), (6.14) in the submillimeter, millimeter and centimeter
ranges of radiowaves. An analysis of these curves shows that to each rainfall
intensity there corresponds a X0 such that for all X > A0, the n and y values

calculated according to Marshall-Palmer, Best and Kalkar agree to within 25%.
As I increases, 0 shifts into the long wave length part of the microwave /284

region. Thus, at an intensity equal to 0.1, 1.0, 10.0 and 100 mm/h, the
corresponding A0 values are 0.35, 0.46, 0.72, and 1.74 cm. If however A < A0'

the ratio nMh/B has a tendency to increase with increasing I and may reach

a maximum value equal to 1.8-2.0.112

IllPertinent surveys of these papers .and their results may be found in [117,
149, 11, 327, etc.]

112nM', M denoted n, y of rain with a drop distribution according to Marshall

and Palmer, and nB, YB denote those of rain with a distribution according to

Best.
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0= ro mm/h y db/km
= t m/h10 2

I= 00 mm/h

10

-to-

10

to- o Acm

1o-' o Figure 6.12. Attenuation Coefficient

y of Rains With Different Drop
Spectra at t = 180C. 1) After
Marshall and Plamer; 2) after Best;

Figure 6.11. Specific Effective 3) after Kalkar.

Radar Scattering Area n of Rains

With Different Spectra of Drops For y, the magnitude of yM/Y at
at t = 180C. 1) After Marshall
and Palmer; 2) after Best; 3) I > 2.5 mm/h increases with increasing

after Kalkar. X and I. The maximum value of this
ratio is 1.5-1.7. At I < 2.5 mm/h,

discrepancies of yB and yM do not exceed 25%. Since the parameters of the

Laws-Parsons n(d) distribution (see Table 6.3) are close to the parameters of

the Best distribution, all of the above applies equally to this type of the

drop spectrum. It is also easy to see that the nK and the yK of rains with

n(d) after Kalkar and an intensity of less than 6 mm/h for all the X under
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consideration are located somewhat lowe r 1 3 than the nB and yB curves, and the /286

nK and YK curves of rains with .intensities above 6 mm/h occupy an intermediate

position between curves nM' nB and yM' YB respectively.

It was pointed out in § 6.1 that in an analysis of rains as a function of
their origin, I. V. Litvinov proposed for their description the functional
relations (6.12), (6.13) with parameters from Tables 6.6, 6.7.

Figures 6-13-6.15 show results of calculation of n.and y of rains of
different origins, using formulas (6.26), (6.27), (6.12).. For comparison, the
same figures show the nM and yM curves. It is obvious that the longer the /287

wave length A, the greater the intensity range in which a practical agreement
of n of rains from rimed and unrimed snow and of nM is-observed. Thus, at

A = 337 jm, agreement takes place for I < 1 mm/h, at X = 0.5 cm, for I < 3
mm/h, and at A = 3 to 10 cm, practically for all I considered.

In the centimeter range of A, rain formed from pellets differs"from rains
of other origin of any I by a 1.5-3 times smaller value of n, and in the
millimeter and submillimeter ranges this conclusion applies only to rains with
I < 2 to 1 mm/h. For y, the corresponding dependences are somewhat less
pronounced. Thus, in the centimeter region of A variation, rains from rimed
and unrimed snow and according to Marshall-Palmer for all I have y values
differing from each other by not more than 10-20%; in the millimeter region of
A, this applies at I < 5 mm/h, and in the submillimeter region, at still
lower values of I.

Let us note that in [248], n(d) were determined from rains of different
origins on the basis of processing of experimental data at I < 15 mm/h. For
this reason, all the radar characteristics not pertaining to these I should
be regarded as an analytical continuation of n and y into a wider region of I.

In the study of the effect of the type of approximation there were
calculations made for n and y of rains of different origins with distribution
n(d) described by expression (6.13). The n and y curves of rain from
pellets, calculated for n(d) from (6.12) and (6.13) for individual wave
lengths of the submillimeter, millimeter and centimeter ranges are plotted in
Figures 6.16 and 6.17. It is evident from the latter that a fairly good
agreement for n is observed only in the range I = 1 to 10 mm/h at all X
simultaneously. The greatest discrepancies (factor of 2-4) are noted for
rains of low intensity (< 0.5 mm/h) and high intensity (> 20 mm/h), these
differences being much smaller at X < 2 mm. ri of rains with I = 0.3 to 20
mm/h and at A > 2 mm agree to within 25%. At A < 2 mm, discrepancies even in
the range I = 1 to 10 mm/h may reach 40-60%.

1 1 3 Not more than 20%.
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both approximations (6.12), (6.13), Marshall and Palmer.

eventually leads to the same
relationships as those already disscussed, and is therefore omitted.

Let us know consider another type of precipitation - drizzle. The n and

d = 0.05 cm.
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y db/km Figure 6.18 shows the dependenc-
of n and y of drizzle on the wave
length X in the submillimeter, milli-

-, meter and centimeter ranges for drop
1'- . - distributions according to Marshall-

A=0.5 . .- -Palmer (6.9), Best (6.11), (6.11a),
Kalkar (6.11), (6.14) and Joss (6.17).

-100- It is evident from the figure that the
highest value of n is in the upper
portion of the submillimeter range and
lower portion of the millimeter range.

- ' The q and y values of drizzle with I =
A . = 0.1 mm/h but different n(d) differ by

a factor of 1.2-3.5. At the same time,
0- / .if one compares the n and y values of /289

drizzle calculated for n(d) according
to Donaldson (6.18), with n and y
presented in Figure 6.18, it is easy

X=10 m to see that the latter will be 800-
- .--. -3,000 times smaller. Although
------ 2 Donaldson obtained distribution (6.18)

- -- -- 3 from only a few observations, it is
4 evident that the radar characteristics

of hydrometeors may in some cases
0- ,,,, , ,,,,,I substantially surpass the average

10-  100 10' .1mm/hr values.

This is also clearly confirmed by
Figure 6.15. Dependence of y of Figure 6.19, which shows the radar

characteristics of drizzle in rain withRains of Different Origins on I
at Different X. t = 18C. 1) Rain drizzle for a distribution of drops

based on different authors. It is
from pellets; 2) rain from rimed evident that the n and y values
snow; 3) rain from unrimed snow;
4) rain with n(d) after Marshall- corresponding to different n(d) at a4) rain with n(d) after Marshall
and Palmer. fixed intensity may differ by hundreds

of times.

The above discussed pronounced
scatter in the values of n and y for rains and drizzle also leads to a
corresponding difference in the radar characteristics of precipitation
consisting of rain with drizzle. Their q and y are obtained additively from
n and y of drizzle and n and y of rain. This is equivalent to calculating
n and y of rain with drizzle directly from formula (6.26), (6.27) at dmin
= 0.01 cm, d = 0.51.max

Results of calculations of the specific effective area of radar scattering
and of the attenuation coefficient for nine laws of particle distribution
(of submillimeter and millimeter ranges) are shown in Tables 6.17 and 6.18. /293

287



db/k n

10 - , 101 - " 2
A'A

10-  f10
2 .

10- 10
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10-8 -- 104~ ---- 2

- - - -3 1

...... . ...

10-6-10) t = 18 to 20. For

S ,,,, notation see Figure 6.16.

9o-J -- 10 ,

'.."101 1 °  SO I , mm/h

Here ..... I is the law of drop distribu-

Figure 6.16. Dependence of n of Kalkar (6.11), (6.14,); IV, V, VI - /288of

.." 0--0---8 Rains from Pellets for n(d)

-Determined Accd According to Expression (6.12)
(6.12) (Curves 1-5) and (6.13) snow after Litvi nd (6.13) (Curves

(Curves 6-10) t = 18 to 20C. For
0- 2 1 ,, .... 1 , .notation see Figure 6.16.

,u /U mHere I is the law of drop distribu-

tion after Marshall-Palmer (6.9); II -

after Best (6.11), (6.11a); III - after

Figure 6.16. Dependence of n of Kalkar (6.11), (6.14); IV, V, VI-- /288

Rains from Pellets for n(d) respectively rain from pellets, rain

Determined According to Expression from rimed snow, and rain from unrimed

(6.12) (Curves 1-5) and (6.13) snow after Litvinov (6.12); VII, VIII,

(Curves 6-10). t = 18 to 200C. IX -respectively, rain from pellets,

1, 6) X = 337 pm; 2, 7) X = 2 mm; rain from rimed snow, and rain from

3, 8) X = 8 mm; 4, 9) X = 3 cm; unrimed snow after Polyakova-Shifrin

5, 10) A = 10 cm. (6.13).
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SIt follows from Tables 6.17 and
6.18 that the n and y values for rain
with drizzle also vary over fairly wide

limits. It is easy to see that the
.,\ n and y values of rain with drizzle for

n(d) after Laws-Parsons (in the centi-
meter region - Table 6.19, in the milli-
meter - Figure 6.20), after Best for
rains with drizzle of nine types1 14

(Table 6.20), after Polyakova (Table 6.21),
-. after Polyakova (6.15) for drizzle and

0 \ after Best for rain (Figure 6.21) and
others lie within the same limits.

0-' 1- N However, if the various distribu-
.\ tions of drops of drizzle are varied

" " with different distributions of drops

2 \109 of rain as was done, for example, in

[298], then on the basis of the above
it is evident that the n and y values of

-\ 3. rain with drizzle thus obtained may
0o -0-'o - / differ by several orders of magnitude

--- 2 from one another.
............ 3

S0- -70-4." . Let us note in conclusion that the
qualitative relationships established
here, particularly for drizzle, are
tentative in view of the imperfection of

S 10-'2 0r" 1o ACm the technique used for measuring fine
droplets. Thus, for example in [255]
it is noted that the filter paperFigure 6.18. n and y of Drizzle with

Drop Distribution After Marshall - method used by Laws and Parsons in [242]

-Palmer (1), Best (2), Kalkar (3), does not permit one to measure a drop

and Joss (4). t = 18 to 200C, I = smaller than 0.3 mm in diameter; the

= 0.1 mm/h. data of Polyakova and Shifrin [251] yield
unreliable statistics for fine droplets;
one cannot theoretically calculate the

distribution curve after Polyakova [255] with d < 0.4 to 0.5 mm. It is noted
in [248] that Best's measurement method [247] introduces significant distor-
tions into the fine droplet portion of the spectrum at d < 0.5 mm.

Effect of d .min and d max. The limits of drop size distribution in rain

precipitation are not constant. Thus, dmax according to observational data is

equal to 6 mm [203], 7.0-7.3 mm [247], 5.0-6.4 mm [204], etc. The case of
d min is similar. If in addition one considers that these parameters change
mln

11 4 See Table 6.12.
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as a function of various external conditions and that a reliable experimental
determination of d . and d is difficult, it becomes evident that in order

min max
to study the radar properties of precipitation in the form of rain it is

necessary to know the extent to which it is influenced by n and y of the initial
and final portions of the distribution functions.

TABLE 6.17. VALUES OF n.10 m m-1 (IN THE NUMERATOR) AND y*10n db/km /292

(IN THE DENOMINATOR) OF RAIN WITH DRIZZLE AT X = 337 pm AND
DIFFERENT n(d). t = 200C.

n (d)

n I I I11 IV V V1 I IX
mm/h v y

0,1 6 6,01 4,80 5,90 1,52 3,66 5,22 1,19 2,24 1,30

1 5,01 3,31 3,61 - - 3,00 4,39 1,28 1,78 0,96

0,3 5 1,21 0,94 1,26 0,42 0,76 0,88 0,35 5,14 0,31

1 9,84 6,45 7,89 3,35 5,96 6,71 3,14 3,78 2,18

0,6 5 1,90 1,43 2,09 0,79 1,19 1,21 0.68 0,86 0,54

O 1,49 0,98 1 0,61 0,87 0,89 0,55 0,68 0,37

1,0 5 2,66 1,95 2,90 1,25 1,65 1,52 1,09 1,24 0,80

- 2,04 1,33 1,85 0,95 1,19 1,07 0,84 0,82 0,54

3,0 5 5,44 3,82 6,24 3,38 3,31 2,44 2,91 2,75 1,87

0 3,98 2,57 4,01 2,43 2,27 1,64 2,05 1,84 1,22

6,0 5 8,53 5,84 10,13 6,27 5,12 3,29 5,34 4,50 3,19
O 6,05 3,90 6,52 4,43 3,45 2,17 3,62 2,97 2,05

10,0 4 1,19 0,80 1,44 0,99 0,71 0,41 0,82 6,48 0,47
- 8,25 5,28 9,33 6,88 4,68 2,64 5,50 4,21 3,02

30,0 4 2,39 1,55 3,12 2,62 1,40 0,63 2,19 1,41 1,08
-1 1,61 1,01 2,00 1,78 0,91 3,98 1,50 8,90 6,83

60,0 4 3,70 2,33 - 4,86 2,14 0,79 3,79 2,28 1,80
-1 2,45 1,50 - 3,23 1,56 3,94 2,51 1,44 1,13

100,0 4 5,09 3,11 - 7,62 2.91 0,90 5,76 3,23 2,59

- 3,32 1,99 -- 5,02 2,06 5,68 3,71 2,02 1,63

Commas indicate decimal points.

Since it is rather difficult to obtain an estimate of this influence in
general form from expressions (6.26), (6.27), an attempt was made in [295] to
set up numerical experiments on a computer for varied n(d) and X at dmin 0.01 /296

cm, dmax  0.05 cm (initial portion of the spectrum), on the one hand, and dmin
= 0.05 cm, d = 0.51 cm on the other. These data have already been discussed

in a study of the radar characteristics of drizzle. We will discuss them here
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from the standpoint of the relationships of n, y of drizzle and n, y of rain
respectively.

TABLE 6.18. VALUES OF n.10 m m-  (IN THE NUMERATOR) AND yl10n db/km
(IN THE DENOMINATOR) OF RAIN WITH DRIZZLE AT A = 3 mm

AND DIFFERENT n(d). t = 180C.

M /h I I II III IV V VI VII VIll IX

0,1 5 1.58 1,40 1,23 0,56 1,59 2,26 0,23 1,13 0,78
I 1,82 148 1,36 60 1.6 2,12 3,14 1,10 0,82

0,3 5 4,72 3,63 3,38 2,01 4.15 4,87 1,32 3,08 1,91
1 5,10 3,95 3,78 2,05 4,31 5,05 3,12 3,24 2,19

0,6 5 8.64 6.02 6.11 4.20 6.91 7.11 3.36 5,30 3,17
0 0,9-4 0,70 0,70 0,43 0,7 0,79 0,34 0,59 0,40

1,0 4 1,30 0,85 0,93 0,70 0,97 0,88 0,62 0,76 0,45
0 1,45 1,03 1,09 0,73 1,11 1,06 0,63 0,90 0,63 /293

3,0 4 2,87 1,66 2,17 1,97 1,83 1,25 1,80 1,52 0,98
0 3,46 2,31 2,73 2,23 2,43 1,87 2,05 2,11 1,48

6,0 4 4,50 2,48 3,64 3,65 2,64 1,51 3,11 2,28 1,42
0 5,80 3,74 4,80 4,38 3,90 2,57 4,03 3,56 2,54

10,0 4 6,15 3,31 5,28 5,62 3,42 1,72 4,47 3,06 1,96

0 8,38 5,27 7,18 7,13 5,72 3,20 6,46 5,17 3,76

30,0 3 1,14 0,64 1,16 1,38 0,59 0,23 0,92 0 57 0.39
I 1,79 1,07 1,70 1,98 1,09 0,49 1,69 1,12 0,86

60,0 3 1,67 0,87 - 2,40 0,84 0,26 1,45 0,84 0,61
1 2,81 1,79 - 3,74 1,67 0,61 3,01 1,81 1,42

100,0 3 2,18 1,12 - 3,60 1,08 0,29 2,04 1,13 0,84
1 3,91 2,20 - 5,93 2,27 0,69 4,54 2,55 2,01

Commas indicate decimal points.

Analysis of the results of the calculations shows that the initial portion
of the spectrum in comparison with the entire remaining portion has the
greatest influence on n and y at different n(d) and A < 2 mm for rain pre-
cipitation of low intensity. In these regions of A and I, the n and y values
for the various laws of distribution of drops with size at 0.01 < d < 0.05 cm
may significantly exceed n and y at 0.05 cm < d < 0.51 cm.

The literature [301-306, etc.] contains a considerable amount of data of
experimental character showing that the Marshall-Palmer distribution (6.9)
slightly exaggerates the number of fine droplets in rain with drizzle (see
for example Figure 6.22).
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TABLE 6.19. VALUES OF y OF RAIN WITH DRIZZLE WITH n(d) AFTER /294
LAWS-PARSONS AT t = 180C AFTER [189].

i, mm/h
I mm 0,25 2 2,5 6, 12,5 , 0, , ,

0,3 0,25 1,29 2,19 3,68 7,08 11,7 19,6 33,7 46,8
0,5 0,159 0,764 1,43 2,63 5,46 9,86 17,0 29,4 40,9
1,0 0,349-10-1 0.210 0,447 0,933 2,43 4,87 9,59 '18,4 26,8
1,5 0,136.10-1 0,878.10- 1  0,196 0,427 1,18 2,49 5,15 10,4 15,7
2,0 0,572-10-2 0,423.10-i 0,100 0,233 0,709 1,53 3,28 6,77 10,2
3,0 0,172.10-2 0,116-10-1 0,2S4-10-1 0,718.10-1 0,240 0,602 1,45 3,43 5,49
4,0 0,757-10-2 0,434.10-2 0,101.10-1 0,252.10-' 0,848.10-' 0,223 0,590 1,55 2,71
5,0 0,442.10-2 0,218-10-2 0,465.10-2 0.107.10-1 0,336-10-1 0,882-10-1 0,235 0,639 1,13
5,5 0,309;10- 2  0,160-10-2 0,339-10-2 0,749.10-2 0,226.10-1 0,580.10-1 0,152 0,416 0,739
6,0 0,242-10-

3  0,123.10-2 0,257.10-2 0,554.10-2 0,159.10-1 0,383-10-1 0,971.10-i 0,260 0,472
:6,5. 0,196.10-3 0,986.10-3 0,203-10-2 0,4.30-10-2 0,120-10-1 0,279.10-1 0,678-10-1 0,174 0,313
7,0 0.162.10-3 0,809.10-3 0,165.10-2 0,346.10-2 0,941.10-2 0,213.10-1 0,49910-1 0,123 0,214
8,0 0,119.10-3 0,572-10-

3  
0,112-10-2 0,234-10-2 0,586.10-2 0,127-10-1 0,283-10-1 0,659.10-1 0,110

9,0 0,939-10-4 0,434-10- 3 0,851-10-3 0,17010-2 0,429-10-2 0,900-10-2 0,194.10-1 0,432-10- 1 0,700-10-1
10,0 0,780.10-4 0,350.10-

3  0,678-10-3 0,133-10-2 0,330-10-2 0,678.10-2 0,142-10-1 0,309-10-1 0,492-10-1

15,0 0,396.10-4 0,159.10-3 0,294-10-3 0,550.10-3 0,128.10-2 0,247-10-2 0,489.10-2 0,989.10-2 0,151.10-1

Commas indicate decimal points.

TABLE 6.20. VALUES OF y OF RAIN WITH DRIZZLE OF VARIOUS TYPES
OF RAIN AT t = 180C AFTER [64, 70].

Type ocm0 xe

tation 1 ,I . 0,3 0,5s o,7s ,0 1 ,5 _ a..o so o,o o15 20,

A 1,64 1,82 1,43 8,11 4,80.10-1 1,93.10-1 4,92.10-2 4,24-10- 3  1,23.10-3 7,34.10-4 2,80.10-4 1,52-10 - 4

B 7,44 7,63 4,44 2,24 1,14 -- -- --

C 3,61 2,45 1,90 1,37 7,75 3,18-10-1 8,63-10-2 7,1I.10- 2,04.10-3 1,19-10- 3  4,6910-4 2,53-10-4
D 1,99 .2,13 2,01 1,69 1,26 6,15.10-1 1,92.10-1 1.25.10-2 3,02.10-3 1,67.10-3 5,84-10- 4  3:02.10-
E 2,76 3,17 2,93 2,46 2,19 2,12 6,13.10-1 5,91.10-2 1.17.10-2 5,68.10-3 1,69.l0-3 7 85.10-4

F 3,75 4,25 4,35 4,11 3,64 2,37 8,01.10-' 5.13.10-2 1,1010-2 6,46.10-3 1,85.10 - 3  9,09.10-

0 7,93 8,35 7,61 6,20 4,56 2,40 7,28.10-1 5,29.10-2 1,21.10-2 6,96.10-3 2,27.10-3 ,17-10- 3

H 8,03 8,61 8,14 6,98 5,73 4,51 1,28 1,12.10-t 2,32.10-2 1,17.1-2 3,64-10-3 i,75- 10- 3

S 9,82 1 1,12 9,60 7,30 5,88 , 6,17 1,64 1.65-10-1 3,33.10-2 1,62.10-2 4,96.10-3 2,29-10

Commas indicate decimal points.

Hence, the calculations (Figure 6.23) of n and y for n(d) according to
expression (6.9) make it possible to obtain the upper estimate of the specific
effective radar scattering area and of the attenuation coefficient of micro-
waves in rains and also in rains with drizzle.

Let us note that the lower limit that we ftook for the size of drizzle
drops is slightly low. For example, according to [159], the minimum drop
diameter can be no smaller than 0.02 cm. As a result, the estimate obtained
for the upper limit of n and y is too high.
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TABLE 6.21. VALUES OF y OF RAIN WITH DRIZZLE WITH n(d) AFTER /295
BEST (B) AND POLYAKOVA (P) AT t = 200C ACCORDING TO THE

CALCULATIONS OF SOKOLOV AND SUKHONIN IN [300]*

_ mn

I, 2,0 1,0 0,8 0,5 0,1

mm/h -s a I n a n a n I n

0,5 0,7 0,8 0,9 0,8 0,9 0,8 0,9 0,8 0,8 0,6
1,0 1,5 1,3 1,7 1,3 1,6 1,2 1,6 1,1 1,5 1,0
2,5 2,3 2,6 2,4 2,5 2,4 2,4 2,3 2,2 2,1 2,0
5,0 3,6 4,1 3,7 3,9 3,6 3,8 3,5 3,4 3,2 3,1

10,0 5,6 7,7 5,7 7,2 5,6 7,0 5,4 6,3 4,9 5,8
25,0 9,3 13,8 9,9 12,8 9,6 12,5 9,3 11,3 8,3 10,4
50,0 16,0 22,1 15,6 20,5 15,3 20,0 14,7 18,1 12,7 16,6
100,0 23,0 34,0 22,7 31,5 22,1 30,0 21,3 28,4 18,0. 26,5

Commas indicate decimal points.
*See also [328].

-1
-1 .y db/km

10 ,10'

101
- 5 12 10

0  100 0.' " mm/h

(6.12): Rain from Pellets (4), Rain From Rimed Snow (5),^

(10) --/O-7 i0 2 - 6 ,

lo-8 I I I I $ I I tliil] I ILLkI

tO-D 100  tOf  1 #0-1 100 10 1 r mm/h

Figure 6.19. n and y of Driz'zle in Rain Precipitation of /291
Different Intensities of X = 337 jm and t = 200C with Drop
Distribution After Marshall-Palmer (6.9) (1); Best (6.11),
(6.11a) (2); Kalkar (6.11), (6.14) (3); After Litvinov
(6.12): Rain from Pellets (4), Rain From Rimed Snow (5).'

Rain from Unrimed Snow (6);!After Polyakova-Shifrin (6.13):
Rain•from Pellets (7), Rain from Rimed Snow (8), Rain from
Unrimed Snow (9). n and y of Rain After Marshall-Palmer
(10).
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y db/krn -2 mm/h It is evident from Figure 6.23 /297
10 that the n values at 0.01 < d < 0.05 cm

5- may surpass n at 0.05 cm < d < 0.51 cm
5-0 by a factor of 1-3, and for y by a factor

2,s5 no greater than 1-1.8. The effect of

the initial portion of function n(d)
-25- decreases with increasing X at I = const

o ~or with increasing I at X = const and

is practically insignificant in the
0.25 upper portion of the millimeter range

005 0 and in the centimeter range.

To estimate the effect of the end

portion of the n(d) spectrum on

Figure 6.20. y of Rain with the radar characteristics of rain, n and

Drizzle for n(d) After Laws- y were calculated from formulas (6.26),

-Parsons in the Millimeter (6.27) with dmin = 0.05 cm and dmax
and Submillimeter Region. f(I), where f(I) is given in the form
t = 200C [299]. of Table 6.22, compiled from the data

of [247, 45]. Results of calculation

for different n(d) showed that in the millimeter and submillimeter regions of

change in X, the variations in n and y values of rain due to variations in

d according to Table 6.22 at 0.1 < I < 100mm/h do not exceed 20%, and in
max

the centimeter range at I < 30 mm/h amount to no more than 25%.

db/km
20- 1= 56 mm/h.04 m -1

5 = 50 mm/h

1

0.5

0.1 I I I I I I
3020 10 5 2 1 0,5 0,2 0.1 3020 10 5 2 1 0.5 0,2Amm

Figure 6.21. n and y of Rain (n(d) After Best) with

Drizzle (n(d) After Polyakova) in the Millimeter and

Submillimeter Regions. t = 200C [298].

The greatest contribution to the end portion of the n(d) spectrum into the

radar characteristics of rain is observed in the centimeter region of change

in X at n > 30 mm/h. For nine types of distribution (the same as in Table /299

6.17), Table 6.23 gives the values of 6n and 6 , defined by the formulas:
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1(0) -)

where n(0), y(0) are the n, y of rain at 0.05 < d < 0.51 cm, n(1), y(1) are the
n, y of rain at 0.5 < d < f(I) cm, and f(I) is determined from Table 6.22.

TABLE 6.22. DEPENDENCE OF d ON RAINFALL INTENSITY I.
max

I mm/h 0.1 0.3 0.6 1.0 3.0 6.0 10.0 30.0 60.0 100.0

d cm 0.20 0.25 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70max

TABLE 6.23. VALUES OF E % (IN THE NUMERATOR) AND 6 % (IN
n Y

THE DENOMINATOR) FOR RAINS (I-IX) WITH DIFFERENT n(d).

X=3 cm

mm/h 1 1 IV V VI VII VIii IX

10 2,1 3,5 0,0 0,6 4,3 0,5 1,9 5,5
0,5 0,0 0,0 0,0 0,9 0,0 0O 0,8

30 1,01 15,6 0,0 6,6 27,7 6,1 11,0 20,2
1,8 3,1 0,0 1,2 7,6 0,9 2,1 4,7

60 22,5 36,5 0,5 15,5 66,2 18,2 24,0 40,7
4,3 11,7 0,0 4,0 19,8 3,5 5,5 10,9

100 37,7 72,7 1,6 32,5 117,5 35,6 39,8 66,2
7,8 20,6 0,0 7,9 39,7 8,4 9,8 18,4

X=,o cm

mm/h I J IV V VI VII ViII IX

10 0,8 0,9 0,0 0,5 2,6 0,0 1,5 3,4
0,3 0, 3 0,0 0,0 1 - 0,0 0,3 1,6

30 6,6 12,0 0,0 4,0 24, I1 4,0 7,2 16,3
1,7 5,9 0,0 --0,5 14,0 0,8 2,9 8,9

60 16,0 35,6 0,7 13,1 60,9 11,1 18,7 35,3
7,3 20,! 0,0 6,3 42,9 6,5 10,1 22,4

100 28,7 65,0 1,0 26,1 114,3 29,1 33,9 58,6
14,! 43,2 0,3 15,4 88,5 17,5 20,8 41,2

Commas indicate decimal points.
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(d)r 3425mn -'  Although distributions IV-IX at large
I are used as noted earlier, with the

fo- aid of far extrapolation of the
experimental data obtained at I < 15

.-. mm/h, nevertheless there is no doubt

that the values of n (), l for the
- :.:. I corresponding parameters X, I and

-" ' a ~\. n(d) may exceed n(  , y by a factor

V. -: -L ' of 2 or more.

o Effective dielectric constants. /301
It is well known that the Debye

L... .. relation (4.16) is unsuitable for

o.: I I determining the dielectric constants

0o o o , .5 4o 4S'; (E) of water in the submillimeter range.
mm At the same time, the data on E

Distribution Functions available in the literature (see § 4.1)
Figure 6.22. iiti have a certain spread. In § 5.2 we
n(d) [306] of Rain With Drizzle, already discussed the question of
Obtained from Experimental Data effect of errors in the determination
(Step Function) and Calculated Data of f of water on the radar characteri-
After Marshall-Palmer (Straight stics of a single drop. Here we will

Line). extend these results to polydisperse
particles.

Calculations of n and y of rain with drizzle for X from 5 mm to 500 Pm were

made in [299]. In this entire region of change in X, the authors of [299] used

dielectric constants of water calculated from the Debye relation. Of interest

is the magnitude of error introduced into n and y.

Calculations (Table 6.24) of n and y of rain (dmin = 0.05 cm, d = 0.51

cm) were carried out by using formulas (6.26), (6.27); 6 of water was determined
from expressions (4.16), (4.14), (4.23), (4.24), on the one hand, and
experimental data (Tables 4.24, 4.29) on the other hand, with n(d) after
Marshall-Palmer (6.9) for wave lengths of 300 and 500 pm and t = 20 to 250C.
It is obvious that the smaller error introduced into n and y by the Debye

values of E does not exceed 25% for n and 10% for y. Calculations for other
types of distributions with e found from formulas (4.26a), (4.26b) and taken

from Table 4.30 and also from the Debye expression show that in determining the

dielectric constant of water in the submillimeter range up to X = 200 pm with
an accuracy up to 20-30% for n and 10-25% for y, use may be made of the Debye
expressions.

Experimental Data. There are a number of papers [46, 11, 149, 189, 267,
287, 288, 298, etc.] which give surveys and contain results of experimental
studies on the scattering and attenuation of microwaves in rain precipitation.

11 5:See also [328-330].
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It was found that the theoretical calculations are frequently in only
qualitative agreement with the experimental data. The disagreement may be due
in part to inaccuracies in the measurement of the intensity of the rain pre-
cipitation and their nonuniformity along the route (see §6.1), usually neglected
in the calculations.

-1 10

10 100 1 10 l
-3  

. . .
b---A 7

Figure 6.23. n and y of Rain with Drizzle, n(d) After /298
Marshall-Palmer. At 0.05 cm < d < 0.51 cm; 1) X = 0.1
cm, 2) X = 0.2 cm, 3) A = 0.3 cm, 4) A = 0.8 cm; at 0.01
cm < d < 0.05 cm: 5) A = 0.1 cm, 6) A = 0.2 cm, 7) A =
= 0.3 cm, 8) A = 0.8 cm.

However, in addition to the measurement errors, the quantitative dis-
agreement between existing theory and experiment is also due to other factors.
One of them, according to R. G. Medhurst [201] is the use of a more simplified
model of actual rain precipitation in the form of a set of individual randomly
situated circle drops separated by gaps whose average size is much greater
than their own. Thus, the experimental data of [307] indicate that rain
precipitation consists rather of a collection-of groups, each of which is made
up of two or more closely situated drops. Such a grouping of drops must
introduce substantial changes into the radar characteristics of liquid
precipitation, which should be examined on the basis of the theory developed in /301
Chapter 2.

In addition, the calculations of radar characteristics of rains took
no account of the fact that, as we were shown by V. G. Khorguani [205], the
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falling velocity of a collection of closely situated particles may be several

times as high as that of a single particle.
1 1 6

TABLE 6.24. VALUES OF n AND y OF Another factor causing dis- /302

RAIN, CALCULATED ON THE BASIS OF agreement between theory and

DIELECTRIC CONSTANTS AFTER DEBYE (IN measurements is the use in the cal-

THE NUMERATOR) AND EXPERIMENTAL DATA culations of distributions of drops

[118-112] (IN THE DENOMINATOR). with size different from those which
actually take place in rain.
Corresponding examples may be found

.0os M-s at. x m I db/kmat).) Am in § 3.6 [149].

mm/h 300 500 3W 50 § 6.4. Radar Characteristics of Hail.

0,1 0,238 0,407 0,195 0,210 A theoretical study of the
0,307 0,420 0,200 0,211 scattering and attenuation of electro-

0,3 0,698 1,05 0,526 0,563 magnetic radiation by polydispersed

0,817 1,12 0,539 0,565 hail [149, 308-310 1 1 7 poses

0,6 1,29 1,81 0,929 0,994 certain difficulties, since n and y

1,44 1,96 0,948 0,996 depend1 1 8not only on the wave length,

1,0 1,98 2,67 1,38 1,48 size distribution functions of the

2,14 2,91 1,41 1,48 particles and its parameters, but
3,0 4,69 5,86 3,11 3,30 also on the shape, state of the surface

4,80 6,50 3,16 3,31 and density of the hailstones. As
already indicated in Chapter 5, the

6,0 7,81 9,42 5,04 5,3 surface of hailstones under natural
conditions may be dry (in the

10,0 11,2 13,2 7,12 7,53 course of buildup of the dull layer)
111 14,9 7,23 7,56 and moist (in the course of mono-

30,0 23,8 27,1. 14,6 15,4 crystalline growth and melting).
23,0 30,9 14,9 15,5 Moreover, depending on the thickness

60,0 37,5 42,1 22,7 23,8 of the water film, scattering by
36,1 48,4 23,2 24,1 hailstones may be equivalent to

100,0 51,8 57,6 31,0 32,5 scattering by equal-sized particles
49,9 66,7 31,8 33,1 of solid ice or continuous water and

may differ from these limiting cases.

Commas indicate decimal points. In this paragraph, on the basis

Note: the column X = 300 Pm of the concepts given in Chapter 5

for n and y give values cal- and [308-310], we will examine the

culated and X = 337 jm, t = 180C specific effective radar scattering

in the denominator; in the area n and attenuation coefficient y

numerator, all the values of polydispersed hail clouds and

correspond to t = 200C. precipitation with different ratios
of dry to wet hailstones, obeying

1 1 6 For more details see page 188.
117 References to other studies can also be found there.
1 1 8 As in the case of rain precipitation, for example.
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the y distribution, as a function of their density and temperature and also of

the parameters of the spectrum.

Calculations of n and y of homogeneous water and ice spheres were carried

out by using formulas (6.26), (6.27) with n(d):

n(d)==N r(p+1)di+' dexp - (6.28)

where N is the total concentration of hailstones per unit volume; r(p + 1) is

the gamma function; d3 is the root-mean-cube diameter of the hail spectrum;

8 is a parameter defined by expression (6.25).

The calulations were performed by assuming that t = O0C; X = 0.86, 3.2,

10, 11, 17 cm; i = 0, 2, 4, 6, 8, 10; d3 = 0.1, 0.2, 0.3,..., 5.0 cm; N = 1 m-3 ;

d . = 0. In view of the fact that the experimental hail spectra [277] break
min

off at such d when the hailstone concentration amounts to about 0.02-0.01
max'

of the concentration of hailstones of modal diameter dmod , we assumed in the

calculations that

dmax = cd 3 , (6.29)

where c values were found for different p from the condition Nd = 0.01 Nd
max mod

(Table 6.25).

TABLE 6.25. VALUE OF PARAMETER c IN RELATION (6.29). /303

P 0 2 4 6 8 10

c 2.14 2.11 2.06 2.00 1.94 1.88

Figures 6.24 and 6.25 give the dependences of normalized values of specific

effective radar scattering areas

(n) 4

and attenuation coefficients

(n) 41
- 4343. 10

5Ntd

of water and ice spheres at p = 0 to 10 for X - 0.86 cm. It is obvious from

these figures that n(n ) and y(n) change little as functions of parameter V.

Similar graphs for X equal 3.2, 11 and 17 cm indicate a tendency toward an

even greater attenuation of the dependence on p with increasing wave length.

Thus, when X = 17 cm, the curves for all P almost merge.
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Nevertheless, in the region of small particles (a(n ) 3 < 0.4 ), the

)(n) and y(n) values decrease with increasing p, and in the region of large
(n)

particles (a(n) > 0.4), they increase. At large p values, this dependence is
less pronounced than at small ones.

Thus, in calculations of the radar reflectivity and attenuation in the
centimeter wave length range in the case of hail clouds, one can use the
two-parameter distribution function of hailstones with size at P = const with
an error not exceeding the error of measurement of these characteristics.
Since according to [277], over one half of the spectra of hail obey (see § 6.1)
the distribution (6.28) with p = 2, and, as is evident from Figures 6.24, 6.25,

the dependence of n(n) and y (n) on a(n) at p = 2 is approximately average;
hereinafter, neglecting the dependence of the radar characteristics on p, we
will consider only the case of v = 2.

The n (n) and y(n) curves for water spheres have a maximum at a(n)= 0.8,

and as a(n) increases further, tend toward asymptotic values, approaching them

at a(n) = 4.

For ice spheres, the maximum of y(n) is reached at a(n) = 2.8, beyond

which the curve slowly approaches the asymptote. The function n(n ) , which

increases slowly with increasing a(n), does not reach a maximum.

It is also evident from Figures 6.24, 6.25 that the y(n) values for water

and ice spheres differ appreciably in the region of small particles (a(n) < 4)

and are the same in the region of large particles (a(n) > 4), whereas the n(n)

values for water and ice spheres differ significantly at any a(n). It should /306

be noted that the dependences of n (n) and y(n) on a(n) for the spectrum of ice
spheres are analogous to the corresponding dependence for individual ice
particles.

Figures 6.26, 6.27 show the n and y curves of water and ice spheres at
different X. A characteristic feature is a rapid growth of n and y with

increasing a(n) to a definite value equal to 0.8 for water spheres and 2.8

for ice spheres. For the growth of n and y for a (n ) greater than the
indicated values is insignificant. Hence, the sharp increase in radar

reflectivity and attenuation in clouds with coarse hail (a(n) > 1), sometimes
detected in radar observations is evidently explained not so much by an
increase in the size of the hail falling from these clouds as an increase in
its concentration.
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(n) (n)

S=0 2 4 6 8 10

=0 2 4 10 o

1 0 1 1 0 0

10-~ 2 

-01

100 o I - - I ,I,,(n)

0 2 4 6 8 10 12 14 16 a - 4

Figure 6.24. Dependence of n ( n ) (1) and y(n) (2) of /304

Water Spheres on a(n) at X = 0.86 cm and for Gamma
Distribution.

The change in the n and y values for different X as a function of d3 is

not proportional (particularly in the case of water spheres), so that ratios of

the type ni /n. or Y /Y , which are independent of the particle concentration, /307

1 j 1 j
may prove useful in determiningll 9d3.

It also follows from Figures 6.26, 6.27 that in coarse hail, the

attenuation of electromagnetic radiation may be significant even at X = 11.0

and 17.0 cm.

Figure 6.28 illustrates the comparative dependence of n and y values on /308

dd for water and ice spheres at a fixed wave length. It is evident that the

1 1 9See [149, 311, etc.]. In addition to other factors, the calculations require

a correct consideration of the phase state of the hailstone surface [312, 310].
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n values for water and ice spheres differ substantially from one another. From
the region of small particles, n of water spheres exceed the n values of ice
spheres by approximately one order of magnitude, and in the region of coarse
particles, ice spheres scatter back better than water spheres. The
behavior of the attenuation coefficient y is similar.

10-' - 100

II 2 # B l o

10 -2 10~- 1

--- 2

2 2 o 6 8 10 12 14 16 ,_

Figure 6.25. Dependence of n(n ) (1) and y(n) (2) of Ice /305

Spheres on c(n) at X = 0.86 cm and for Gamma Distribution.

Above, the radar characteristics of hail were studied under the
assumption that all the hailstones in the spectrum are homogeneous in structure
and have a density of 1 g/cm3 . We will remove these limitations [310] and
consider the scattering and attenuation of electromagnetic radiation in poly-
dispersed hail clouds by taking into account the crystallization processes /309
determining the phase state of the surface (ice-water), the thickness of the
water film and the density of the growing hailstones.

As was indicated in § 5.1, according to modern views, the growth of hail
nuclei formed as a result of the freezing of a small number of large cloud
drops is due to their coalescence with supercooled drops. Moreover, depending
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on the thermodynamic parameters of the cloud and size of the hailstone, one

of two markedly different crystallization regimes of the water reaching the

hailstone is established: the supercritical or the subcritical regime. The

criterion of separation of the two regimes is the quantity hs defined by

formula (5.1).

-1ydb/km T( Cm1

10 10-

e=06cM3.2 3170 /

1001 ,4 d0-m

101 _10-,
1W I

-- 2

10, -I0-"7

0 I 2 4 4 d3 cm

Figure 6.26. Dependence of n (1) and y (2) of Water

Spheres on d3 for Gamma Distribution of i = 2 and

Different A.

We introduce into consideration the critical hailstone diameter dc, which

is the value of d at which h5 reaches the critical value, equal to 0.1 cm.

Taking into account the dependence [158] of the falling velocity of the

hailstones on their integral density and size, and also on the air density,

from expression (5.1) 1 2 0we can easily obtain:
12 1

12flNormalized for the case of a rotating hailstone [310].

121The meaning of the symbols used here is the same as in 5 5.1, dc in cm,

3 - 3
Pi in g/cm , qE in g/m
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d 0'20 exp [-0,017 (to - t)] (6.30)

The air density (pa) as a function of temperature t was approximated by the

relation

P a 0,863exp [-0,017(to - t)],

obtained by processing data of temperature sounding of the atmosphere on days
with hail.

1 db/km.j".O m-86

a / '- S
-I

10 10 - 10.0

10 2 10 - 1.0

. 10-  lO "

1 0-1 0
-

c I"
/ 7

10 10

/ 8

0 2 3 4 da cm

Figure 6.27. Dependence of n (1) and y (2) of
Ice Spheres on d3 for Gamma Distribution with
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,1

10' 10 -

wVter

Ice

100 ,00,

io-' -10 / /

/ 2

and Ice Spheres on d3 for Gamma Distribution with

9 = 2. X = 3.2 cm.

Formula (6.30) is convenient in the sense that dc for the given values of

temperature t and effective water content qE divides the 'hail spectrum in the

cloud into two parts (Figure 6.29): wet hailstones (region-B at d > d ) and
c/310

dry hailstones (region A at d < dc). Specific results of the calculation of

the critical diameters of hailstones under different conditions of their

growth in the cloud are shown in Figure 6.30.

It is evident from Figures 6.29, 6.30 that the relative number of wet

hailstones in the spectrum ircreases either when the supercooling of the cloud

decreases or when the effective water content increases, or finally when the

values of the ifoot-mean-cube diameter of the hailstones increases. The

thickness of the water film hsh on the surface of wet hailstones may be
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calculated from formula (5.2) by considering the approximate equality

to-t)

Results of calculations of hsh made under this assumption are presented in

Figure 6.31, from which it is evident that the thickness of the water film on
the surface of hailstones growing in the subcritical regime amounts to fractions
of a millimeter and decreases with increasing size of the hailstones.

decm q=2 g/m 3

nt (d)

A -- 8/A

6-/

Figure 6.29. Relationships of."Dry" 0 2
and Wet Hailstones in Two Spectra -10 -20 -30 tVC
Differing by the Root-Mean-Cube
Diameter d3 (d3" > d3 ') .

Figure 6.30. Dependence of dc on

h,  Temperature t and All the Effective
0,8 Water Content qE in the Cloud.

1) Pi = 0.600 g/cm 3 ; 2) pi = 0.800

0,6 - g/cm 3.

.0,5 Considering the characteristics of
formation of structurally inhomogeneous
hail, calculations were made to determine
its specific effective radar scattering
area

0.3 2 de dmax

S6d = n(d) a(d)dd+ n (d) (d, hh)dd cm-'
dmi dC

Figure 6.31. Dependence of and attenuation coefficient /311
Thickness of Water Film hsh max

on the Hailstone on Its Size r= S n(d)a2 (d)dd- n(d)C2 (d, hsh)dd db/lan,
d and on the Temperature in d
the Cloud t. p. = 0.800
the Cloud t. 0.800 where o (d) and o2 (d) are respectively
g/cm .

the effective radar scattering and
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attenuation areas of dry hailstones [see formulas (1.270), (1.274), (1.288)];

o0 (d, hsh) and 02 (d, hsh) are respectively the effective radar scattering and

attenuation areas of wet hailstones with diameter d and thickness of water film

hsh [see formulas (1.276), (1.274), (1.281)-(1.283), (5.2)]; n(d) is the
-3

size distribution function of the particles (6.28) for N = 1 m , p = 2, X = 3.2 /312

cm, d min= 0.3 cm, d max 2.11 d3 , d3 = 0.3 (0.1) 3.0, t = -100 C, qE equal to
mn max3

2.5, 5.0, 10.0 g/m3 , Pi = 0.916 g/cm 3, dc was determined from formula (6.30)

and the dielectric constants.of supercooled water were taken from the appendix.

10
Water "

qE=2,5 g/m

10-9

0 1\2 do cm

Figure 6.32. Dependence of n of Hail with an
Inhomogeneous Spectrum on d3 for Different

Water Contents of the Cloud qE. t = -100C,
X = 3.2 cm, pi = 0.916 g/cm 3 .
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Results of the calculations are presented in Figures 6.32, 6.33 in the
form of curves. It is evident from the figures that the scattering and
attenuation of radar radiation with 3.2 cm wave length by hail growing in a
cloud has a fairly complex character and differs substantially in many cases
from the scatterip 2and attenuation of electromagnetic waves by pure water or
pure ice spheres. This is explained by a change in the relative amounts of
dry and wet hailstones in the spectrum, and also in the thickness of the water
film as a function of the parameters of the cloud (t, qE) and hailstones (d3).

sh/lan

-=qE 2, g/cm

Water

O- l . :10-1

100
li

L Ice

io " I fi I I I I I - I I I c m

S1 2d' 3 cm

Figure 6.33. Dependence of y of Spectrally Inhomogeneous Hail on d3
for Different Water Contents of the Cloud qE. t= -100 C, X = 3.2 cm,
Pi = 0.916 g/cm3 .

122 In Figures 6.32, 6.33, they are denoted by a heavy solid line and points.
We will note tentatively that comparison of n and y of pure.ice spheres for
gamma distribution at t = -106C.(Figures 6.32, 6.33) and t =.OQC (Figure 6.28)
shows that they are practically independent of temperature (with an error of
not more than 20-25%). See also § 5.3.
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Dry and wet 1failstones in turn,' like wet hailstones of the same size but
with a different thickness of the water film, are not equivalent to one another

"radarwise," which in the final analysis determines the complex character of
the relationships discussed.

Analysis of Figures 6.32, 6.33 shows that only the spectra of hail with
d < 1.4 may be considered at qE = 2.5 g/m3 to be "radar dry". At higher: /314

values of d3 in the larger-drop portion of hail growing at the same water

content, wet hailstones begin to appear whose relative number and contribution
to the total scattering and attenuation of electromagnetic radiation increases
with increasing d3 .

As qE rises, the fraction-of wet hailstones in the spectrum increases
(Figure 6.30), so that at t = -10 0C and qE = 10 g/m3, all the hailstone with

d > 0.2 cm are coated with a water film. It is easy to note (Figure 6.32)
that the n curve of such a completely wet hail occupies some intermediate
position between the n curves for pure water and pure ice spheres, but a
position closer to the n curve for water spheres.

At the same time, y of wet hail at qE = 10 g/m practically coincides
with y for water spheres (Figure 6.33). This is explained by the characteristics
of scattering and attenuation of microwaves by individual wet hailstones. The
thickness of the water film on them is such that wet hailstones are equivalent
to water drops in attenuation of electromagnetic radiation.

In the case of radar scattering, the water film on the hailstones proves
insufficiently "thick" to produce a similar electromagnetic effect.

The same conclusions can be reached by examining the n and y curves at
a water content qE = 5 g/m3. Let us note at this point that the calculations
given in Figures 6.32, 6.33, were made for different values of the water

content qE, but at a constant temperature in the cloud equal to -10 0C. It is
clear that under other thermodynamic conditions in the cloud, the functions of

scattering n and attenuation y may differ substantially from those shown in
Figures 6.32, 6.33.

In additiQn to the effects discussed above, a substantial influence on
the character of scattering and attenuation of microwaves in hail clouds is
that of the density of ice in hailstones, which usually changes (see §-5.1)
over fairly wide limits: from 0.3 to 0.9 g/cm 3. As was shown by calculations
(Figure 6.34) made by using formula (6.26)-(6.29), hail of low density

(p = 0.600 g/cm 3) scatters and attenuates radar radiation (X = 3.2 cm) much
i3

worse than hail with density pi = 0.92 g/cm .

Thus, scattering and attenuation of radar radiation by hail occurring
under natural conditions largely depends on the cloud parameters (t, qE),
density and characteristics of the hailstone spectrum (d3),-which,determine

309



the relative amounts of dry and wet hailstones, and also on the thickness of

the water film on their surface.

cm1

y db/l

/1

--- 2

0 2 d cm

Figure 6.34. Dependence of n and y of Ice Spheres
of Different Densities on d for Gamma Distribution

with = 2. t = -100C, X = 3.2 cm. 1) p = 0.916

g/cm , 2) pi = 0.600 g/cm
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APPENDIX /315

VALUES OF DIELECTRIC CONSTANTS OF WATER

The tables list values of e', E", n and K of water for various combinations

of wave lengths X from 0.08 to 20 cm and temperatures t from 0 to 40
0C, and also

of supercooled water at X = 0.08 to 17 cm and t = -2, -400C.

All the values were determined from formulas (4.3), (4.13), (4.16), (4.14),

(4.23) and (4.24) for -0 
= 5.5.

xcm I l" i n ' 
1  II I' 4" I I

t =00 C t -2 0 C ==40 C

0,08 5,55 1,98 2,39 0,41 5,55 2,10 2,40 0,44 5,56 2,23 2,40 0,46

0,09 5,56 2,23 2,40 0,46 5,57' 2,37 2,41 0,49 -5,58 2,51 2,42 0,52

0,10 5,58 2,47 2,42 0,52 5,58 2,63 2,42 0,54 5,60 2,79 2,43 0,57

0,20 5,80 4,94 2,59 0,95 5,84 5,24 2,62 1,00 5,88 5,56 2,64 1,05

0,30 6,16 7,37 2,81 1,31 6,25 7,82 2,85 1,37 6,36 8,29 2,90 1,43

0,40 6,67 9,77 3,04 1,61 6,83 10,36 3,10 1,67 7,01 10,96 3,16 1,73

0,50 7,31 12,11 3,28 1,85 7,56 12,83 3,35 .1,91 7,83 13,56 3,43 1,98

0,60 8,09 14,39 3,51 2,05 8,44 15,23 3,59 2,12 8,82 16,07 3,68 2,18

0,62 8,26 14,84 3,55 2,09 8,63 15,70 3,64 2,15 9,03 16,55 3,73 2,21

0,70 8,98 16,61 3,73 2,22 9,45 17,54 3,83 2,29 9,95 18,47 3,93 2,35

0,80 9,99 18,74 3,95 2,37 10,58 19,75 4,06 2,43 11,22 20,76 4,17 2,49

t 00 C t=2 0 C t=40 C

0,86 10,64 19,97 4,08 2,45 11,31 21,03 4,19 2,51 12,04 22,07 4,31 2,56

0,90 11,10 20,78 4,16 2,50 11,82 21,86 4,28 2,55 12,60 22,93 4,40 2,60

1,00 12,31 22,73 4,37 2,60 13,17 23,85 4,50 2,65 14,02 24,96 4,62 2,70

1,24 15,52 26,99 4,83 2,79 16,73 28,16 4,97 2,83 18,00 29,28 5,12 2,86

1,50 19,38 30,91 5,29 2,92 20,95 32,04 5,44 2,94 22,57 33,06 5,59 2,95

2,00 27,33 36,46 6,04 3,02 29,45 37,25 6,20 3,00 31,58 37,88 6,36 2,98

2,50 35,20 39,68 6,64 2,99 37,63 39,99 6,80 2,94 40,01 40,09 6,95 2,88

3,00 42,43 41,12 7,12 2,89 44,96 40,92 7,27 2,81 47,36 40,52' 7,41 2,74

3,20 45,08 41,31 7,29 2,83 47,60 40,93 7,43 2,75 49,96 40,35 7,56 2,67

3,50 48,79 41,31 7,51 2,75 51,25 40,66 7,64 2,66 53,52 39,85 7,75 2,57

4,00 54,23 40,69 7,81 2,60 56,53 39,69 7,92 2,50 58,59 38,55 8,02 2,40

4,50 58,83 39,58 8,05 2,46 60,91 38,31 8,15 2,35 62,74 36,94 8,23 2,24

5,00 62,69 38,20 8,25 2,32 64,54 36,73 8,33 2,20 66,13 35,22 8,40 2,10

5,50 65,93 36,69 8,41 2,18 67,54 35,09 8,48 2,07 68,90 33,48 8,53 1,96

5,60 66,50 36,38 8,44 2, 16 68,07 34,76 8,50 2,04 69,39 33,14 8,55 1,94

Commas indicate decimal points.
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Icm f j I° f R K I H i K 6' 6"

6,00 68,64 35,15 8,54 2,05 70,04 33,46 8,59 1,95 71,19 31,80 8,64 1',84
6,50 70,93 33,62 8,64 1,94 72,13 31,89 8,69 1,84 73,09 30,20 8,72 1,73
7,00 72,87 32,14 8,73 1,84 73,88 30,39 8,77 1,73 74,68 28,70 8,79 1,63
7,50 74,52 30,73 8,81 1,74 75,37 28,98 8,84 1,64 76,01 27,30 8,85 1,54
8,00 75,93 29,40 8,87 1,66 76,63 27,66 8,89 1,56 77,14 26,01 8,90 1,46
8,50 77,15 28,15 8,92 1,58 77.72 26,43 8,94 1,48 78,11 24,81 8,95 1,39

t 0 0 C t=2 0 C t=4 0 C

9,00 78,20 26,98 8.97 1,50 78,65 25,29 8,98 1,41 78,94 23,70 8,98 1,32
9,50 79,11 25,88 9,01 1,44 79,46 24,22 9,01 1,34 79,65 22,67 9,01 1,26

10.00 79,91 24-1. 85 9,04 1.37 80,17 23,23 9,05 1.28 80,28 21,72 9,04 1,20
11 ,00 81,22 22,99 9,10 1,26 81,32 22,44 9,09 1,18 81,29 20,01 9,08 1,10
12,00 82,26 21,36 9,14 1,17 82,23 19,89 9,13 1,09 82,10 18,54 9,12 1,02
14,00 83,75 18.67 9,21 1,01 83.54 17,34 9,19 0,94 83,24 16,13 9,17 0,88
16,00 84,75 16,54 9,25 0,89 84,41 15,34 9,22 0,83 84,00 14,25 9,20 0,77
17,00 85,13 15,64 9,26 0.84 84,73 14,50 9,24 0,78 84,28 13,46 9,21 0,73
18,00 85,45 14,83 9,28 0,80 85,01 13,74 9,25 0.74 84,53 12,75 9,22 0,69
20,00 85,96 13,44 9,30 0,72 85,46 12,44 9,27 0,67 84,91 11,53 9,24 0,62

t=6o C t= 80 C t=100 C

0,08 5,57 2,36 2,41 0,49 5.58 2,49 2,42 0,52 5,59 2,63 2,43 0,54
0,09 5,59 2,66 2,43 0,55 5,60 2,81 2,44 0,58 5,61 2,96 2,44 0,60
0.10 5,61 2,95 2,44 0,60 5,62 3,12 2,45 0,63 5,64 3,28 2,47 0,67
0,20 5,93- 5,88 2,67 1,10 5,99 6,20 2,70 '1,15 6,015 6.53 2,73 1,20
0,30 6,47 8,76 2,95 1,49 6,59 9,24 2,99 1,54 6,72 6,72 3,04 1,60
0,40 7,20 11,57 3,23 1,79 7,41 12,18 3,29 1,85 7,64 12.80 3,36 1,91
0,50 8.13 14.29 3,51 2,04 8,45 15,03 3,58 2,10 8,79 15,76 3,66 2,15
0,60 9,23 16,91 3,77 2,24 9,68 17,74 3,87 2,29 10,16 18,57 3,96 2,35
0,62 9,47 17,41 3,83 2,27 9,95 18,27 3,92 2,33 10,45 19,11 4,01 2,38
0,70 10,50 19,40 4,03 2,40 11,08 20,31 4,14 2,46 11,71 21,21 4,24 2,50
0,80 11,91 21,75 4,28 2,54 12,64 22,73 4,40 2,59 13,42 23,67 4,51 2,63
0,86 12,81 23,10 4,43 2,61 13,64 24,09 4,55 2,65 14,51 25,05 4,66 2,69
0,90 13,44 23,96 4,52 2,65 14,32 24,97 4,64 2,69 15,26 25,94 4,76 2,72
1,00 15,08 26,02 4,75 2,74 16,12 27,04 4,88 2,77 17,21 28,01 5,00 2,80
1,24 19,39 30,32 5,26 2,88 20,73 31,28 5,40 2,90 22,17 32,15 5,53 2,91
1,50 24,25 33,97 5,74 2,96 25,97 34,76 5,89 2,95 27,71 35,42 6,03 2,94
2,00 33,71 38,33 6,51 2,94 35,82 38,61 6,65 2,90 37,88 38,73 6.78 2.852,50 42,31 40,00 7,09 2,82 44,51 39,74 7,22 2,75 46,59 39,31 7,33 2,68
3,00 49,61 39,94 7,53 2,65 51,70 39,22 7,63 2,57 53,61 38,36 7,73 2,48

t =- 60 C t- = 80 C I= 10 C
3,20 52,15 39,61 7,67 2,58 54,16 38,73 7,77 2,49 55,99 37,74 7,86 2,40
3,50 55,60 38,89 7,86 2,47 57,47 37,82 7,95 2,38 59,14 36,66 8,02 2,28
4,00 60,44 37,31 8,11 2,30 62,06 36,01 8,18 2,20 63,47 34,67 8,24 2,10
4,50 64,34 35,52 8,30 2,14 65,70 34,07 8,36 2,04 66,86 32,62 8,40 1,94
5,00 67,48 33.68 8,45 1.99 68,61 32,15 8,50 1,89 69,54 30,64 8,53 1,80
5,50 70,03 31.88 8,57 1,86 70,95 30,31 8,61 1,76 71,68 28,78 8,63 1,67
5,60 70,48 31,53 8,59 1,83 71,36 29,95 8,62 1,74 72,05 28,43 8,65 1,64
6,00 72.12 30,17 8,67 1,74 72,85 28,59 8,69 1,64 73,41 27,07 8,71 1,55
6,50 73,84 28,57 8,75 1,63 74,41 27,00 8,76 1,54 74,81 25,51 8,77 1,457,00 75,27 27,08 8,81 1,54 75,70 25,54 8,82 1,45 75,97 24,08 8,82 1,36
7,50 76,47 25,71 8,86 1,45 76,77 24,20 8,87 136 76,9J 27,78 8,86 1,28
8,00 77.48 24,45 8,91 1,37 77,67 22,98 8,91 1,29 77,74 21,60 8,90 1,21
8,50 78,34 23,28 8.95 1,30 78,44 21,85 8,94 1,22 78,42 20,52 8,9.3 1,15
9,00 79,08 22,21 8,98 1,24 79,09 20,83 8,97 1,16 79,01 19,54 8,96 1,09
9,50 79,71 21,22 9,01 1,18 79,66 19,88 8,99 1,11 79,51 18,63 8,98 1,04

Commas indicate decimal points.
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10,00 80,26 20,31 9,03 1,12 80,15 19,01 9.01 1,05 79,94 17,81 9,00 0,99
11,00 81,16 18,69 9,07 1,03 80,94 17,47 9,05 0,97 80,64 16,34 9,03 0,91
12,00 81,87 17,29 9,10 0,95 81,56 16,14 9,07 0,89 81,19 15,09 9,05 0,83
14,00 82,87 15,01 9,14 0,82 82,44 14,00 9,11 0,77 81,97 13,06 9,08 0,72
16,00 83,53 13,25 9,17 0,72 83,02 12,34 9,14 0,68 82,48 11,51 9,10 0,63

17,00 83,78 12,51 9,18 0,68 83,24 11,65 9, 15 0,64 82,66 .10,86 9,11 0,60

18,00 83,99 11,85 9,19 0,64 83,43 11,03 9,15 0,60 82,83 10,28 9, 12 0,56

20,00 84,33 10,71 9,20 0,58 83,72 9,96 9,17 0,54 83,09 9,28 9,13 0,51

t= 120 C t= 140 C t= 160 C

0,08 5,60 2,77 2,43 0,57 5,61 2,90 2,44 0,59 5,62 3,04 2,45 0,62

0,09 5,62 3,11 2,45 0,63 5,64 3,27 2,47 0,66 5,65 3.42 2,48 0,69
0,10 5,65 3,45 2,48 0,70 5,67 3,62 2,49 0,73 5,69 3,80 2,50 0,76

0,20 6,11 6,87 2,77 1,24 6,18 7,21 2,80 1,29 6,25 7,55 2,83 1,33

0,30 6,86 10,20 3,09 1,65 7,01 10,69 3,15 1,70 7,17 11,19 3,20 1,75

t== 12 C t= 140 C t= 16" C

0,40 7,89 13,42 3,42 1,96 8,15 14,04 3,49 2,01 8,43 14,66 3,56 2,06
0,50 9,16 16,49 3,74 2,20 9,56 17,22 3,82 2,25 9,98 17,94 3,91 2,30

0,60 10,67 19,39 4,05 2,39 11,21 20,20 4,14 2,44 11,79 20,99 4,23 2,48
0,62 11,00 19.95 4,11 2,43 11,57 20,77 4,20 2,47 12.18 21,57 4,30 2,51

0,70 12,37 22,10 4,34 2,54 13,07 22,95 4,44 2,58 13,81 23,78 4,54 2,62

0,80 14,24 24,59 4,62 2,66 15,10 25,47 4.73 2,69 16,00 26,30 4,84 2,72
0,86 15,43 25,98 4,78 2,72 -16,39 26,85 4,89 2,75 17,38 27,68 5,00 2,77
0,90 16,24 26.86 4,88 2,75 17,26 27,73 5,00 2,78 18,32 28,55 5,11 2,79
1,00 18,35 28.91 5,13 2,82 19,52 29,75 5,25 2,83 20,73 30,52 5,37 2,84

1,24 23,64 32,93 5,66 2,91 25,14 33,60 5,79 2,90 26,65 34,18 5,92 2,89
1,50 29,46 35,96 6,16 2.92 31,21 36,36 6,29 2,89 32,93 36,64 6,41 2,86
2,00 39,88 38.69 6,91 2.80 41,80 38,50 7,02 2,74 48,62 38,19 7,13 2,68
2..50 48,53 38,74 7,44 2,60 50,34 38,06 7,53 2,53 52,01 37.27 7,62 2,45
3,00 55,35 37,40 7,82 2,39 56,92 36,37 7,89 2,30 58,32 35,27 7,95 2,22

3,20 57,62 36,66 7,93 2,31 59,08 35,52 8,00 2,22 60,36 34,35 8,06 2,13

3,50 60,62 35,45 8,09. 2,19 61,91 34,20 8,14 2,10 63,02 32,93 8,19 2,01

4,00 64,68 33,30 8.29 2,01 65,70 31,93 8,33 1,92 66,56 30,58 8,36 1,83
4,50 67,82 31,17 8,44 1,85 68,61 29,76 8,47 1,76 69,24 28,38 8,49 1,67

5,00 70,29 29,16 8,56 1,70 70,87 27,74 8,57 1,62 71,31 26,37 8,58 1,54

5,50 72.24 27,31 8,64 1,58 72.65 25,90 8,65 1,50 72,93 24,56 8,66 1,42

5,60 72,58 26,96 8,66 1.56 72,95 25,55 8,67 1,47 73,20 24,22 8,67 1,40

6,00 73,80 25,62 8,72 1,47 74,07 24,25 8,72 1,39 74,21 22.94 8,71 1,32

6,50 75,07 24,09 8,77 1,37 75,21 22,76 8,77 1,30 75,25 21,50 8,76 1,23

7,00 76,12 22,71 8,82 1,29 76,15 21,41 8,81 1,22 76,09 20,20 8,80 1,15

7,50 76,98 21,45 8,86 1,21 76,93 20,21 8,84 1,14 76,79 19,04 8,83 1,08

8,00 77,70 20,31 8,89 1,14 77,57 19,11 8,87 1,08 77,37 18,00 8,85 1,02

8,50 78,31 19,28 8,92 1,08 78,12 18,13 8,90 1,02 77,85 17,05 8,88 0,96

9,00 78,83 18,34 8,94 1,03 78,58 17,23 8,92 0,97 78,27 16,20 8,89 0,91

9,50 79,28 17,48 8,96 0,98 78,98 16,41 8,93 0,92 78,62 15,42 8,91 0,87

10,00 79,66 16,69 8,97 0,93 79,32 15,66 8,95 0,88 78,93 14,71 8,92 0,82

11,00 80,28 15,30 9,00 0,85 79,87 14,34 8,97 0,80 79,41 13,46 8,94 0,75

12,00 80,77 14,12 9,02 0,78 80,30 13,23 8,99 0,74 79,80 12,40 8,96 0,69

t =120 C t = 140 C t = 169 C

14,00 81.45 12,21 9,05 0,67 80,91 11,43 9,02 0,63 80,34 10,71 8,98 0,60
16,00 81,90 10,75 9,07 0,59 81,31 10,05 9,03 0,56 80,69 9,42 9,00 0,52
17,00 82,07 10,14 9,08 0,56 81,45 9,48 9,04 0,52 80,82 8,88 9,00 0,49
18,00 82,22 9,59 9,08 0,53 81,58 8,97 9,05 0,50 80,94 8,40 9,01 0,47
20,00 82,44 8,66 9,09 0,48 81,78 8,09 9,05 0,45 81,11 7,57 9,02 0,42

Commas indicate decimal points.
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it= 180 C t = 200 C t = 220 C
0,08 5,63 3.19 2,46 0,65 5,65 3,33 2,47 0,67 5,66 3,47 2,48 0,700,09 5,67 3,58 2,49 0,72 5,69 3,74 2,50 0,75 5,71 3,91 2,51 0,780,10 5,71 3,98 2,52 0,79 5,73 4,16 2,53 0,82 5,75 4,34 2,55 0,850,20 6,33 7,89 2,87 1,38 6,42 8,24 2,90 1,42 6,51 8,59 2,94 1,460,30 7,35 11,68 3,25 1,80 7,53 12,17 3,31 1,84 7,73 12,66 3,36 1,880,40 8,73 15,28 3,63 2,11 9,04 15,89 3,70 2,15 9,38 16,50 3,77 2,190,50 10,42 18,65 3,99 2.34 10.89 19,35 4,07 2,38 11,38 20,03 4,15 2,410,60(i 12,39 21,76 4,33 2,51 13,02 22,51 4,42 2,55 13,69 23,23 4,51 2,580,62 12,81 22,35 4,39 2,54 13,48 23,10 4,48 2,58 14,18 23,83 4,58 2,600,70 14,58 24,58 4.65 2,65 15,38 25,34 4,74 2,67 16,22 26,06 4,84 2,690,80 16,94 27,09 4,94 2,74 17.91 27,83 5,05 2,76 18,90 28,02 5,15 2,770,86 18,42 28,45 5,11 2,78 19,48 29,17 5,22 2,79 20,57 29,82 5,33 2,800,90 19,42 29,30 5,22 2,80 20,54 29,99 5,33 2,81 21,68 30,62 5,44 2,811,00 21,97 31,21 5,48 2,85 23,23 31,83 5,60 2,84 24,51 32,36 5,71 2,841,24 28,17 34,64 6,03 2,87 29,69 35,00 6,15 2,85 31,19 35,26 6,26 2,821,50 34,63 36,80 6,53 2,82 36,28 36,83 6,63 2,78 37,88 36,76 6,73 2,732,00 45,35 37,75 7,22 2,61 46,96 37,21 7,31 2,54 48,47 36,58 7,39 2,48
2,50 53,52 36,40 7,69 2,37 54,89 35,46 7,75 2,29 56,12 34,48 7,81 2,213,00 59,55 34,14 8,01 2,13 60,62 32,98 8,05 2,05 61,55 31,81 8,09 1,973,20 61,48 33,14 8,10 2,05 62,44 31,93 8,14 1,96 63,26 30,72 8,17 1,88
3,50 63,97 31,66 8,23 1,92 64,77 30,39 8,26 1,84 65,42 29,15 8,28 1,764,00 67,25 29,25 8,38 1,74 67,81 27,96 8,40 1,66 68,24 26,70 8,41 1,594,50 69,72 27,04 8,50 1,59 70,08 25,76 8,51 1,51 70,32 24.53 8.51 1,44

t = 180 C t = 200 C = 220 C

5,00 71.61 25.05 8.59 1,46 71,81 23,80 8,59 1,39 71,90 22,61 8,58 1,32
5,50 73,09 23,28 8,65 1,35 73,15 22,08 8,65 1,28 73,12 20,93 8,64 1,21
5,60 73,34 22,95 8,67 1,32 73,38 21,75 8,66 1,26 73,33 20,62 8,65 1,19
6.00 74,25 21,71 8,71 1,25 74,21 20,55 8,69 1,18 74,08 19,46 8,68 1,12
6,50 75.19 20,31 8,75 1,16 75,05 19,20 8,73 1,10 74,85 18,16 8,71 1,04
7.(00 75,95 19,07 8,78 1,09 75,74 18,01 8,76 1,03 75,46 17,02 8,74 0,97
7,30 76,57 17,96 8,81 1,02 76,30 16,94 8,79 0,96 75,97 16,00 8,76 0,91
8.00 77,09 16.96 8,83 0,96 76,77 15,99 8,81 0,91 76,39 15,09 8,78 0,86
8.50 77,53 16,06 8,85 0,91 77,16 15,13 8,83 0,86 76,75 14,27 8,80 0,81
9,00 77,90 15,24 8,87 0,86 77,49 14,36 8,84 0,81 77,04 13,53 8,81 0,77
9,50 78,22 14.50 8.88 0,82 77,77 13,65 8,85 0,77 77,30 12,87 8,82 0,73

10,00 78,49 13,83 8,89 0,78 78,02 13,02 8,86 0,73 77,52 12,26 8,83 0,69
11,00 78.92 12,65 8,91 0,71 78.41 11,89 8,88 0,67 77,86 11,20 8,85 0,63
12,00 79,27 11.65 8.93 0,65 78,72 10,95 8,89 0,62 78,14 10,31 8,86 0,58
14.00 79,75 10,05 8,95 0,56 79,14 9,44 8,91 0,53 78,52 8,88 8,88 0,50
16,00 80,06 8,83 8,96 0,49-, 79,42 8,29 8,92 0,46 78,77 7,80 8,89 0,44
17,00 80.18 8,32 8,97 0,46 79,52 7,81 8,93 0,44 78,86 7,35 8,89 0,41
18,00 80,28 7,87 8,97 0,44 79,62 7,39 8,93 0,41 78,95 6,95 8,89 0,39
20,00 80,44 7,10 8,98 0,40 79,76 6,66 8,94 0,37 79,07 6,26 8,90 0,35

t = 240 C t 260 C t = 280 C

0,08 5,68 3,62 2,49 0,73 5,70 3,77 2,50 0,75 5,71 3,91 2,51 0,78
0,09 5,73 4,07 2,53 0,81 5,75 4,23 2,54 0,83 5,77 4,40 2,55 0,86
0,10 5,78 4,52 2,56 0,88 5,81 4,70 2,58 0,91 5,83 4,89 2,59 0,94
0,20 6,60 8,94 2,98 1,50 6,71 9,29 3,01 1,54 6,82 9,64 3,05 1,58
0,30 7,94 13,16 3,41 1,93 8,16 13,64 3,47 1,97 8,39 14,13 3,52 2,01
0,40 9,73 17,10 3,83 2,23 10,10 17,69 3,90 2,27 10,49 18,27 3,97 2,30
0,50 11,90 20.70 4.23 2,45 12,44 21,35 4,31 2,48 13,00 21,98 4,39 2,50
0,60 14,38 23,92 4,'60 2.60 15,09 24.59 4,69 2,62 15,83 25,22 4,78 2,64
0,62 14,90 24,52 4.67 2,63 15,65 25,18 4,76 2,65 16,43 25,81 4.85 2,66
0,70 17,07 26,74 4,94 2,71 17,96 27,38 5,04 2,72 18,87 27,97 5,13 2,73
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314 ---



x I E' ) n x ' H I I ' I . I 

t -=240 C t= 260 C t = 28 C

0,80 19,92 29,15 5,26 2,77 20,96 29,73 5,35 2,78 22,02 30,24 5,45 2,77
0,86 21,68 30,41 5,43 2,80 22,80 30,94 5,53 2,80 23,94 31,39 5,63 2,79
0,90 22,85 31,17 5,54 2,81 24,02 31,65 5,65 2,80 25,20 32,07 5,74 2,79
1,00 25,79 32,81 5,81 2,82 27,07 33,19 5,91 2,81 28,35 33,48 6,01 2,79
1,24 32,67 3.35,42 6,36 2,79 34,11 35,48 6,45 2,75 35,52 35,45 6,55 2,71
1.50 39,42 36,58 6,83 2,68 40,90 36,30 6,91 2,63 42,30 35,94 6,99 2,57
2,00 49,h6 35,87 7,46 2,40 51,13 35,1p 7,52 2,33 52,29 34,27 7,58 2,26
2,50 57,22 33,46 7,86 2,13 53,18 32,41 7,90 2,05 59,02 31,36 7,93 1,98
3,00 62,34 30,64 8,12 1,89 63,01 29,49 8,14 1,81 63,55 28,35 8,16 1,74
3,20 63,94 29.53 8,20 1,80 64,49 28,35 8,21 1,73 64,94 27,20 8,23 1,65
3,50 65,95 27.93 8,29 1,68 66,37 26,75 8,30 1,61 66,68 25,60 8,31 1,54
4,00 68,55 25,49 8,42 1,51 68,77 24,33 8,42 1,45 68,89 23,21 8,41 1,38
4,50 70,47 23,35 8,51 1,37 70,53 22,23 8,50 1,31 70,51 21,16 8,49 1,25
5,00 71,91 21,48 8,57 1.25 71,84 20,41 8,56 1,19 71,71 19,40 8,54 1,14
5.50 73,02 19,85 8,62 1,15 72,86 18,84 8,61 1,09 72,63 17,88 8,59 1,04
5.60 73,21 19,54 8,63 1,13 73,03 18,54 8,61 1,08 72,79 17,59 8,59 1,02
6,00 73,89 18.43 8,66 1,06 73,64 17,47 8,64 1,01 73,35 16,56 8,62 0,96
6,50 74,58 17,19 8,69 0,99 74,27 16,28 8,67 0,94 73,92 15,42 8,64 0,89
7,00 75,14 16,09 8,72 0,92 74,78 15,22 8,69 0,88 74,38 14,41 8,66 0,83
7,50 75,60 15,12 8,74 0,86 75,19 14,29 8,71 0,82 74,75 13,53 8,68 0,78
8,00 75,98 14,25 8,75 0,81 75,53 13,47 8,73 0,77 75,06 12,74 8,69 0,73
8,50 76,30 13,47 8,77 0,77 75,82 12,73 8,74 0,73 75,32 12,03 8,71 0,69
9,00 76,57 12,77 8,78 0,73 76,06 12,06 8,75 0,69 75,54 11,40 8,72 0.,65
9,50 76,79 12,14 8,79 0,69 76,27 11,46 8,76 0,65 75,72 10,83 8,72 0,62
10,00 76 99 11,56 8,80 0.66 76,45 10,91 8,77 0,62 75,88 10,31 -8,73 0,59
11.00 77,36 10,55 8,81 0,60 76,73 9,96 8,78 0,57 76,14 9,40 8,74 0,54
12,00 77,55 9,71 8,82 0,55 76,95 9,16 8,79 0,52 76,34 8,65 8,75 0,49
14,00 77,89 8,36 8,84 0,47 77,26 7,88 8,80 0,45 76,62 7,44 8,76 0,42
16,00 78,12 7,34 8,85 0,41 77,46 6,92 8,81 0,39 76,80 6,53 8,78 0,37
17,00 78,20 6,91 8,85 0,39 77,53 6,52 8,81 0,37 76,86 6,15 8,77 0,35
.18,00 78,27 6,54 8,85 0,37 77,60 6,16 8,82 0,35 76,92 5,81 8,78 0,33
20.00 78,38 5,89 8,86 0,33 77,70 5,55 8,82 0,31 77,01 5,24 8,78 0,30

t 300 C t = 320 C t = 340 C
0,08 5,73 4,06 2,53 0,80 5,75 4,21 2,54 0,83 5,77 4,36 2,55 0,86
0,09 5,79 4';7 2,57 0,89 5.82 4,74 2,58 0,92 5,85 4,91 2,60 0,94
0,10 5.86 5,07 2,61 0,97 5,89 5,26 2,63 1,00 5,93 5,44 2,64 1,03
0,20 6.93 9,99 3,09 1.62 7,05 10,34 3,13 1,65 7,18 10,69 3,17 1,69
0,30 8, 4 14,61 3,58 2,04 8,90 15,09 3,63 2,08 9,17 15,57 3,69 2,11
0,40 10,90 18,84 4,04 2.33 11,32 19,40 4,11 2,36 11,76 19,94 4,18 2,39
0,50 13,59 22,59 4,47 2,53 14,19 23,17 4,55 2,55 14,82 23,73 4,63 2,56
0.60 16,59 25,81 4,86 2,65 17,37 26,37 4,95 2,67 18,17 26,89 5,03 2,67
0,62 17,23 26,40 4,94 2,67 18,04 26,95 5,02 2,68 18,88 27,46 5, 2,69
0,70 19,79 28,51 5,22 2,73 20,73 29,00 5,31 2,73 21,69 29,44 5,40 2,73
0,80 23,08 30,70 5,54 2,77 24,16 31,09 5,64 2,76 25,24 31,42 5,72 2,74
0,86 25,08 31,78 5,73 2,78 26,22 32,10 5,82 2,76 27,37 32,35 5,91 2,74
0.90 26,39 32,41 5,84 2,78 27,56 32,68 5,93 2,76 28,74 32,87 6,02 2,73
1,00 29,62 33,69 6,10 2,76 30,88 33,82 6,19 2,73 32,11 33,88 6,28 2,70
1,24 36,88 35,33 6,63 2,66 38,20 35,13 6,71 2,62 39,47 34,86 6,79 2,57
1.50 43,62 35,49 7,07 2,51 44,87 34,98 7,13 2,45 46,03 34,41 7,19 2,39
2.00 53,34 33,41 7,63 2,19 54,29 32,50 7,67 2,12 55,13 31,60 7,70 2,05
2,50 59,74 30,30 7,96 1,90 60,36 29,25 7,98 1,83 60,88 28,20 8,00 1,76
3,00 63,99 27,23 8,17 1.67 64,34 26,14 8,18 1.60 64,60 25.08 8,18 1,53
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3,20 65,29 26,08 8,23 1,58 II 65,54 24,99 8,24 1,52 65,71 23,94 8,24 1,45
3.50 66,90 12-, 50 8,31 1,47 67,03 23,43 8,31 1,41 67,09 22,41 8,30 1,35
4,00 68,94 22,15 8,41 1,32 68,91 21,13 8,40 1,26 68,83 20,16 8,38 1,20
4,50 70,42 20, 15 8,48 1,19 70,27 19.18 8,46 1,13 70,07 18,27 8,44 1,08
5,00 71,52 18,44 8,53 1,08 71,28 17,53 8,51 1,03 70,99 16,68 8,48 0,98
5,50 72,36 16,98 8,56 0,99 72,05 16,03 8,54 0,94 71,69 15,32 8,51 0,90
5,60 72,50 16,70 8,57 0,97 72,17 15,86 8,55 0,93 71,81 15,07 8,52 0,88
6,00 73,01 15,71 8,59 0,91 72,64 14,91 8,57 0,87 72,24 14,16 8,54 0,83
6,50 73,53 14,62 8.62 0,85 73,11 13,86 8,59 0,81 72,66 13,16 8,56 0,77
7,00 73,95 13,65 8,64 0,79 73,49 12,94 8,61 0,75 73,01 12,28 8,57 0,72
7,50 74,29 12,81 8,65 0,74 73,80 12,14 8,62 0,70 73,29 11,51 8,59 0,67
8,00 74,57 12,06 8,66 0,70 74.05 11,42 8,63 0,66 73,52 10,83 8,60 0,63
8,50 74,80 11,39 8,67 0,66 74,26 10,78 8,64 0,62 73,71 10,22 8,61 0,59

t == 300 C -= 320 C t =34' C

9,00 75,00 10,78 8,68 0,62 74,44 10,21 8,65 0,59 73,87 9,67 8,61 0,56
9,50 75,16 10,24 8,69 0,59 74,59 9,69 8,65 0,56 74,01 9,18 8,62 0,53
10,00 75,31 9,75 8,70 0,56 74,72 9,23 8,66 0,53 74,13 8,74 8,62 0,51
11,00 75,54 8,89 8,71 0,51 74,93 8,41 8,67 0,48 74,31 7,96 8,63 0,46
12,00 75,72 8,17 8,71 0,47 75,09 7,73 8,68 0,45 74,47 7,32 8,64 0,42
14,00 75,97 7,03 8,73 0,40 75,32 6,65 8,69 0,38 74,67 6,29 8,65 0,36
16,00 76,13 6.16 8,73 0,35 75,47 5,83 8,69 0,34 74,80 5,52 8,65 0,32
17,00 76,19 5,80 8,73 0,33 75,52 5,49 8,70 0,32 74,85 5,19 8,66 0,30
18,00 76,24 5,49 8,74 0,31 75,57 5,19 8,70 0.30 74,89 4,91 8,66 0,28
20,00 76,32 4,95 8,74 0,28 75,64 4,67 8,70 0,27 74,96 4;42 8,66 0,26

t = 360 C t = 380 C t 400 C

0.08 5,80 4,52 2,56 0,88 5,82 4,67 2,58 0,91 5,85 4,82 2,59 0,93
0,09 5,88 5,08 2,61 0,97 5,91 5,25 2,63 1,00 5,94 5,42 2,64 1,02
0,10 5,96 5,63 2,66 1,06 6,00 5,82 2,68 1,09 6,04 6,01 2,70 1,11
0,20 7,31 11,04 3,21 1,72 7,46 11,39 3,25 1,75 7.60 11,74 3.29 1,79
0,30 9,45 16,04 3,75 2,14 9,75 16,50 3,80 2,17 10,06 16,95 3,86 2,20
0.40 12,22 20,47 4,25 2,41 12,70 20,98 4.31 2,43 13,20 21,48 4,38 2,45
0,50 15,46 24,26 4,70 2.58 16,12 24.76 4,78 2,59 16,80 25,23 4,85 2,60
0,60 16,99 27,37 5,11 2,68 19,82 27,81 5,19 2,68 20,66 28,21 5,27 2,67
0,62 19,73 27,93 5,19 2,69 20,59 28,35 5,27 2.69 21,47 28,72 5,35 2,68
0,70 22,65 29,83 5,48 2,72 23,62 30,16 5,56 2,71 24,59 30,45 5,64 2,70
0,80 26,32 31,68 5,81 2.,73 27,39 31,89 5,89 2,71 28,45 32,03 5,97 2,68
0,86 28,50 32,54 5,99 2,72 29,62 32,66 6,07 2,69 30,72 32,71 6,15 2,66
0,90 29,89 33,00 6,10 2,70 31,03 33,06 6.18 2,67 32,14 33,05 6,26 2,64
1,00 33,31 33,86 6,36 2,66 34,48 33,77 6,43 2,63 35,61 33,62 6,50 2,58
1,24 40,67 34,51 6,86 2,52 41,81 34,10 6,92 2,46 42,89 33,63 6,98 2,41
1,50 47,12 33,78 7,25 2,33 48,11 33,11 7,30 2,27 49,03 32,40 7,34 2,21
2,00 55,87 30,66 7,73 1,98 56,52 29,73 7,76 1,92 57,08 28,79 7.78 1,85
2,50 61,30 27,18 8,01 1,70 61,64 26,17 8,02 1,63 61,90 25,19 8,02 1,57
3,00 64,77 24,06 8,18 1,47 64,88 23,07 8,18 1,41 64,92 22,11 8,17 1,35

t == 36 C t = 380 C t -40 0 C
3.20 65,81 22,93 8,23 1,39 65,84 21,96 8,22 1,34 65,81 21,02 8,21 1,283,50 67,08 21,42 8,29 1,29 67,02 20,48 8,28 1,24 66,90 19,59 8,26 1,184,00 68,68 19,23 8,37 1,15 68,49 18.35 8,35 1,10 68,26 17,52 8,33 1,054,50 69,83 17,41 8,42 1,0;3 69,54 16,59 8,40 0,99 69,23 15,81 8,37 0,945,00 70,67 15,87 8,46 0,94 70,32 15,11 8,43 0,90 69,94 14,39 8,41 0,865,50 71,31 14,57 8,49 0,86 70,90 13,86 8,46 0,82 70,47 13,19 8,43 0,785,60 71,42 14,32 8,49 0,84 71,00 13,62 8,46 0,80 70,56 12,96 8,44 0,776,00 71,81 13,46 8,51 0,79 71,36 12,79 8,48 0,75 70,88 12,17 8,45 0,726.50 72,20 12,49 8,53 0,73 71.71 11,87 8.50 0.70 71.21 11,29 8,46 0,67
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!cm 1 ' I ' A ' I I I I ' I I " i. .
7,00 72,51 11,66 8,54 0,68 72,00 11,07 8,51 0,65 71,47 10,52 8,48 0,62
7,50 72,76 10,92 8,55 0,64 72,23 10,37 8,52 0,61 71,68 9,85 8,49 0,58
8,00 72,97 10,27 8,56 0,60 72,42 9.75 8,53 0,57 71,86 9,26 8,49 0,55
8,50 73,15 9,69 8,57 0,57 72,58 9,20 8,54 0,54 .72,00 8,74 8,50 0,51
9,00 73,30 9,17 8,58 0,53 72,71 8,70 8,54 0,51 72,12 8,26 8,51 0,49
9,50 73,42 8,71 8,58 0,51 72,83 8,26 8,55 0,48 72,23 7,84 8,51 0,46
10,00 73,53 8,28 8,59 0,48 72,92 7,86 8,55 0,46 72,32 7,46 8,52 0,44
11,00 73,70 7,54 8,60 0,44 73.08 7,15 8,56 0,42 72,45 6,79 8,52 0,40
12,00 73,83 6,93 8,60 0,40 73,20 6,58 8,56 0,38 72,57 6,24 8,53 0,37
14,00 74,02 5,96 8,61 0,35 73,37 5,65 8,57 0,33 72,72 5,36 8,53 0,31
16,00 74,14 5,22 8,62 0,30 73,48 .4,95 8,58 0,29 72,82 4,70 8,54 0,28
17,00 74,18 4,92 8,62 0,29 73,51 4,66 8,58 0,27 72,85 4,42 8,54 0,26
18,00 74,22 4,65 8,62 0,27 73,55 4,41 8,58 0,26 72,89 4,18 8,54 0,24
20,00 74,28 4,19 8,62 0,24 73,61 3,97 8,58 0,23 72,94 3,76 8,54 0,22

t = -20 C t= --40 C t= --60 C

0,08 5,54 1,86 2,39 0,39 5,54 1,74 2,38 0,37 5,53. 1,63 2,38 0,34
0,10 5,56 2.32 2,41 0,48 5,56 2,18 2,40 0,45 5,55 2,03 2,39 0,42
0,20 5,76 4,63 2,56 0,90 5,72 4,34 2,54 0,85 5,69 4,06 2,52 0,81
0,30 6,08 6,93 2,77 1,25 6,00 6,49 2,72 1,19 5,94 6,07 2,69 1,13
0,40 6,52 - 9,18 2,98 1,54 6,39 8,62 2,92 1,47 6,27 8,06 2,87 1,40

t = -20 C t = -40 C t = -- 60 C

0,50 7,09 11,40 3,20 1,78 6,88 10,71 3.13 1,71 6,70 10.02 3,06 1,64
0,60 7,76 13,57 3,42 1,98 7,48 12,76 3,34 1,91 7,21 11,96 3,25 1,84
0,62 7,91 14,00 3,46 2,02 7,61 13,16 3,38 1,95 7,33 12,34 3,29 1,87
0,70 8,55 15,68 :3,64 2,16 8,17 14,76 3,54 2,09 7,82 13,85 3,44 2,01
0,80 9,44 17,72 3,84 2,31 8,95 16,70 3,73 2,24 8,50 15,70 3,63 2,16
0,86 10,03 18,91 3,96 2,38 9,46 17,84 3.85 2,32 8,95 16,79 3,74 2,24
0,90 10,43 19,69 4,04 2,43 9,82 18,59 3,93 2,37 9,26 17,50 3,81 2,30
1,00 11,50 21,57 4,24 2,54 10,78 20,41 4,11 2,48 10.10 19,25 3,99 2,41
1,24 14,39 25,76 4,68 2,75 13,34 24,49 4,54 2,70 12,37 23,19 4,40 2.64
2,0 25,26 35,49 5,87 3,03 23,25 34,38 5,69 3,02 21,32 33,13 5,51 3,01
3,0 39,81 41,09 6,96 2,95 37,18 40,83 6,79 3,01 34,40 40,33 6,61 3,05
3,2 42,44 41,48 7,13 2,91 39.71 41,41 6,97 2,97 36,91 41,10 6,79 3,03
5,6 64,66 37,96 8,36 2,27 62.54 39,47 8,26 2,39 60,13 40,85 8,15 2,51
10,0 79,47 26,58 9,04 1,47 78,84 28,41 9,02 1,58 77,98 30,35 8,99 1,69
11,0 80,97 24,65 9,10 1,35 80,54 26,42 9,09 1,45 79,90 28,32 9,07 1,56
17,0 85,45 16,90 9,29 0,91 85,68 18,27 9,31 0,98 85,81 19,78 9,32 1,06

t -8 C t= -10 0 C t -- 120 C

0,08 5,53 1,52 2,37 0,32 5,52 1,41 2,57 0,30 5,52 1,31 2,37 0,28
0,10 5,54 1,90 2,39 0,40 5,54 1.76 2,38 0,37 5,53 1,64 2,38 0,34
0,20 5,67 3,79 2,50 0,76 5,64 3,52 2.48 0,71 5,62 3,27 2,46 0.66
0,30 5,87 5,67 2,65 1,07 5,82 5,27 2,61 1,01 5,77 4,90 2,58 0,95
0,40 6,16 7,53 2,82 1,34 6,07 7,01 2,77 1,27 5,99 6,51 2,72 1,20
0,50 6,53 9,37 3,00 1,56 6,39 8,73 2,93 1,49 6,27 8,12 2,87 1,41
0,60 6,98 11,18 3,18 1,76 6,77 10,43 3,10 1,68 6,59 9,70 3,03 1,60
0,62 7,08 11,54 3,21 1,80 6,86 10,77 3,13 1,72 6,66 10,02 3,06 1,64
0,70 7,50 12,97 3,35 1,93 7,22 12,10 3,26 1,85 6,97 11,27 3,18 1,77
0,80 8,10 14,72 3,53 2,09 7,73 13,75 3,43 2,01 7,41 12,81 3,33 1,92
0,86 8,49 15,75 3,63 2,17 8,07 14,72 3,53 2,09 7,70 13,73 3,42 2,00
0,90 8,76 16,42 3,70 2,22 8,31 15,36 3,59 2,14 7,91 14,33 3,48 2,06
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t .= -- 8 C t = -10 0 C i= -12 0 C

1,00 9,49 18,09 3,87 2,34 8,94 16,94- 3,75 2,26 8,45 15,82 3,63 2,18
1,24 11,48 21,88 4.25 2,57 10,68 20.57 4,11 2,50 9,96 19,27 3,98 2,42
2,0 19,50 31,76 5,33 2,98 17,80 30,29 5,14 2,94 16,23 28,74 4,96 2,90
3,0 31,68 39,58 6,42 3,08 29,01 38,60 6,22 3,10 26,44 37,39 6,01 3,11
3.2 34,09 40,52 6,60 3,07 31,29 39,69 6,40 3,10 28,56 38,62 6,19 3,12
5,6 57,45 42,07 8,02 2,62 54,49 43,08 7,87 2,74 51,30 43,82 7,71 2,84

10,0 76,85 32,36 8,95 1,81 75.42 34,43 8,90 1,94 73,65 36.52 8,83 2,07
11.0 79,02 30,31 9,05 1,68 77,87 32,39 9,01 1,80 76,40 34,54 8,95 1,93
17,0 81,81 21,42 9,33 1,15 85,64 23,21 9,34 1,24 85,30 25,15 9,33 1,35

t =-14 0 C t = -16 0 C t= -18 0 C

0,08 5,52 1,21 2,36 0,26 5,51 1,12 2,36 0,24 5,51 1,03 2,36 0,22
0,10 5,53 1,52 .2,37 0,32 5,52 1,40 2,37 0,30 5,52 1,29 2,36 0,27
0,20 5,60 3,03 2,45 0,62 5.59 2,80 2,43 0,57 5,57 2,58 2,42 0,53
0,30 5,73 4,54 2,55 0.89 5,70 4,19 2,58 0,83 5,67 3,86 2,50 0,77
0,40 5,91 6,03 2,68 1,13 5,85 5,58 2,64 1,06 5,79 5,15 2,60 0,99
0,50 6,14 7,52 2,82 1.34 6,04 6,96 2,76 1,26 5,96 6,42 2,71 1,18
0,60 6,42 9,00 2,96 1,52 6,28 8,33 2,89 1,44 6, 16 7,69 2,83 1,36
0,62 6,49 9,29 2,98 1,56 6,33 8,60 2,92 1,47 6,20 7,94 2,85 1,39
0,70 6,75 10,46 3,09 1,69 6,56 9,68 3,02 1,60 6,39 8,94 2,95 1,52
0,80 7,13 11,90 3,24 1,84 6,88 11,03 3,15 1,75 6,66 10,19 3,07 1,66
0,86 7,38 12,76 3,33 1,92 7,09 11,83 3,23 1,83 6,84 10,93 3,14 1,74
0,90 7,55 13,33 3,38 1,97 7,24 12,36 3,28 1,88 6,97 11,43 3,19 1,79
1,00 8,02 14,73 3,52 2,09 7,64 13,67 3,41 2,00 7,31 12,64 3,31 1,91
1,24 9,32 17,99 3,85 2,34 8,75 16,73 3,72 2,25 8,25 15,52 3,59 2,16
2,0 14,78 27,14 4,78 2,84 13,48 25,50 4,61 2,77 12,32 23,86 4,43 2,70
3,0 23,97 35,99 5,80 3,10 21,66 34,42 5,58 3,08 19,52 32,71 5,37 3,05
3,2 25,93 37,32 5,97 3,12 23,44 35,82 5,75 3,11 21,12 34,16 5,54 3,09
5,0 47,90 44,25 7.52 2.94 44.36 44,34 7,32 3,03 40,75 44,06 7,10 3,10
10,0 71,53 38,59 8,74 2,21 69,02 40,58 8,63 2,35 66,13 42,43 8,51 2,49
11,0 74,58 :36,70 8,88 2,07 72,39 38,85 8,79 2,21 69,79 40,91 8,68 2,36
17,0 84,72 27,23 9,32 1,46 83,88 29,45 9,29 1,58 82,73 31,80 9,26 1,72

t - -20 C t = -- 220 C t = -24 0 C

0,08 5,51 0,95 2,35 0,20 5,51 0,87 2,35 0,19 5,51 0,80 2,36 0.17
0,10 5,52 1,19 2,36 0,25 5,51 1,09 2.36 0,23 5,51 1,00 2,37 0,22
0,20 5,56 2,37 2,41 0,49 5,55 2,18 2,40 0,45 5,54 1,99 2,39 0,42
0,30 5,64 3,56 2,48 0,72 5,62 3,26 2,46 0,66 5,60 2,99 2,44 0,61
0,40 5,72 4,73 2,57 0,92 5,71 4,35 2,54 0,86 5,67 3,98 2,51 0,79
0,50 5,88 5,91 2,67 1,12 5,82 5,43 2,62 1,03 5,77 4,97 2,59 0,96
0,60 6,05 7,08 2,77 1,28 5,96 6,50 2,72 1,20 5,88 5,96 2,67 1,12
0,62 6,09 7,31 2,79 1,31 5,99 6,72 2,74 1,23 5,91 6,16 2,69 1,15
0,70 6,25 8,24 2,88 1,43 6,13 7,57 2,83 1,34 6,02 6,94 2,76 1,26
0,80 6,48 9,39 2,99 1.57 6,32 8,64 2,92 1,48 6,18 7,92 2,85 1,39
0,86 6,63 10,08 3,06 1,65 6,44 9,27 2,98 1,56 6,28 8,51 2,90 1,46
0,90 6,73 10,54 3,10 1,70 6,53 9,69 3,02 1,61 6,36 8,89 2,94 1,51
1,00 7,02 11,67 3,21 1,82 6,77 10,74 3,12 1,72 6,56 9,86 3,03 1,63
1,24 7,81 14,34 3,47 2,06 7,44 13,22 3,36 1,97 7,12 12,15 3,26 1,87
2,0 11,29 22,23 4,26 2,61 10,38 20,63 4,09 2,52 9,56 19,07 3,93 2,42
3,0 17,56 30,90 5,15 3,00 15,80 29,02 4,94 2,94 14,23 27,12 4,74 2,86
3,2 18,98 32,37 5,31 3,04 17,04 30,49 5,10 2,99 15,30 28,55 4,88 2,92
5,6 37,13 43,41 6,87 3,16 33,58 42,39 6,62 3,20 30,16 41,04 6,37 3,22
10,0 62,84 44,06 8,35 2,64 59,20 45,40 8,18 2.78 55,25 46,37 7,98 2,91
11,0 66,79 42,82 8,55 2,50 63,39 44,49 8,39 2,65 59,62 45,86 8,21 2,79
17,0 81,23 34,23 9,20 1,86 79,33 36,72 9,13 2,01 76,99 39,20 9,04 2.17

Commas indicate decimal points.
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Acm I " I

t = -- 260 C i =--280 C t - -30 0 C

0,08 5,51 0,73 2,35 0,16 5,50 0,67 2,35 0,14 5,50 0,61 2,35 0,13
0,10 5,51 0,91 2.36 0,19 5,51 0,83 2,35 0,18 5,51 0,76 2,35 0, 16
0,20 5,54 1,82 2,38 0,38 5,53 1,66 2,38 0,35 5,52 1.51 2,:37 0,32
0,30 5,58 2,73 2,43 0,56 5,57 2,49 2,41 0,52 5,55 2,27 2,40 0,47
0,40 5,64 3,64 2,49 0,73 5,62 3,32 2,46 0,67 5,60 3,03 2,45 0,62
0,50 5,72 4,55 2,55 0,89 5,68 4,15 2,52 0,82 5,65 3,78 2,49 0,76
0,60 5,82 5,45 2,62 1,04 5,76 4,98 2,59 0,96 5,72 4,53 2,55 0,89
0,62 5,84 5,63 2,64 1,07 5,78 5,14 2,60 0,99 5,73 4,68 2,56 0,91

t = -260 C t = -280 C t 7= -300 C

0,70 5,93 6,35 2,70 1,17 5,86 5,80 2,66 1,09 5,79 5,28 2,61 1,01
0,80 6,06 7,25 2,79 1,30 5,96 6,62 2,73 1,21 5,88 6,03 2,67 1,13
0,86 6,15 7,79 2.83 1,37 6,04 7,11 2,77 1,28 5,94 6,48 2,71 1,19
0,90 6,21 8,14 2.86 1,42 6,09 7,44 2,80 1,33 5,98 6,78 2,74 1,24
1,00 6,38 9,03 2,95 1,53 6,22 8,25 2,88 1,43 6,10 7,52 2,81 1,34
1,24 6,84 11,14 3,16 1,77 6,61 10,19 3,00 1,66 6.41 9,30 2,98 1,56
2,0 8,91 17,57 3,78 2,32 8,33 16,14 3,64 2,22 7,84 14,77 3,50 2,11
3,0 12,84 25.21 4,54 2,78 11,64 23,33 4,34 2,69 10,60 21,51 4,16 2,59
3,2 13,77 26,60 4,68 2,84 12,43 24,67 4,47 2,75 11,27 22,77 4,28 2,66
5,6 26,93 39,40 6,11 3,22 23,93 37,51 5,85 3,21 21,21 34,45 5,59 3,17
10,0 51,06 46,92 7,76 3,02 46,73 46,99 7,52 3, 13 42,35 46,56 7,26 3,21
11.0 55,53 46,84 8,01 2,93 51,21 47,36 7,78 3,04 46,75 47,39 7,53 3,15
17,0 74,18 41,60 8,92 2,33 70,89 43,84 8,78 2,50 67,14 45,82 8,61 2,66

t = -32' C t - -34 0 C t =- -36 0 C

0.08 5,50 0,55 2,35 0,12 5.50 0,50 2,35 0,11 5,50 0,45 2,35 0,10
. 10 5,50 0,69 2,35 0,15 5,50 0,62 2,35 0,13 5,50 0,57 2,35 0,12

0,20 .5,52 1,38 2,37 0,29 5,52 1,25 2,36 0,26 5,51 1,13 2,36 0.24
0,30 5,54 2,06 2,39 0,43 5,54 1.87 2,39 0,39 5,53 1,70 2,38 0,36
0,40 5,58 2,75 2,43 0,57 5,56 2,50 2,41 0,52 5,55 2,26 2,40 0,47
0,50 5,62 3,44 2.47 0,70 5,60 3,12 2,45 0,64 5,58 2,83 2,43 0,58
0,60 5,68 4,12 2,53 0,82 5,64 3,74 2,49 0,75 5,62 3,39 2,47 0,69
0,62 5,69 4,26 2,53 0,84 5,65 3,87 2,50 0,77 5,62 3,,50 2,48 0,71
0,70 5,74 4,81 2,57 0,93 5,70 4,36 2,54 0,86 5,66 3,95 2,50 0,79
0,80 5,81 5,49 2,63 1,04 5,76 4,98 2,59 0,96 5,71 4,52 2,55 0,89
0,86 5,86 5,89 2,66 1,11 5,79 5,36 2,62 1,02 5,74 4,85 2,57 0,94
0,90 5,90 6,17 2,69 1,15 5,82 5,60 2,64 1,06 5,76 5,08 2,59 0,18
1,00 5,99 6,85 2,75 1,25 5,90 6,22 2,69 1,16 5,82 5,64 2,64 1.07
1,24 6,25 8,47 2,90 1,46 6,11 7,70 2,82 1,36 6,00 6,98 2,76 1,27
2,0 7,42 13,49 3,38 2,00 7,07 12,29 3,26 1,85 6,78 11,17 3,15 1,77

t = -320 C t = -34 0 C - -360 C

3,0 9,72 19,75 3,98 2,48 8,97 18,07 3,81 2,37 8,34 16,49 3,66 2,25
3,2 10,27 20,94 4,10 2,55 9.43 19.18 3,92 2,44 8,72 17,52 3,76 2,33
5,6 18,77 33,25 5,34 3,12 16,61 30,99 5,09 3,05 14,74 28,71 4,85 2,96

10,0 38,02 45,65 6,98 3,27 33,86 44,29 6,69 3,31 29,95 42,54 6,40 3,32
11,0 42,45 46,91 7,26 3,23 37,85 45,92 6,98 3,29 33,61 44,47 6,68 3,33
17,0 62,95 47,43 8,42 2,82 58,40 48,59 8,20 2,96 53,59 49,22 7,95 3,10

Commas indicate decimal points.
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t =- -- 380 C t . -- 40, C

0,08 .5,50 0,41 2,35 0,09 5,50 0,37 2,35 0,08
0,10 5,50 0,51 2,35 0,11 5,50 0,46 2,35 0,10
0,20 5,51 1,02 2,36 0,22 5,51 0,92 2,36 0,20
0,30 5,52 1,54 2,37 0,32 5,52 1,39 2,37 0,29
0,40 5,54 2,05 2,39 0,43 5,53 1,85 2,38 0,39
0,50 5,57 2,55 2,42 0,53 5,55 2,31 2,41 0,48
0,60 5,59 3,07 2,45 0,62 5,58 2,77 2,43 0,57
0,62 5,60 3,17 2,45 0,65 5,58 2,86 2,43 0,59
0,70 5,63 3,58 2,48 0,72 5,60 3,23 2,46 0,66
0,80 5,67 4,09 2,52 0,81 5,64 3,69 2,49 0,74
0,86 5,69 4,39 2,54 0,87 5,66 3,97 2,51 0,79
0,90 5,71 4,60 2,55 0,90 5,67 4,15 2,52 0,82
1,00 5,76 5,11 2,59 0,98 5,71 4,61 2,56 0,90
1,24 5,90 6,32 2,70 1,17 5,83 5,72 2,64 1,08
2,0 6,54 10,13 3,05 1,66 6,34 9,17 2,96 1,55
3,0 7,81 15,00 3,52 2,13 7,38 13,61 3,38 2,01
3,2 8,13 15,95 3,61 2.21 7,64 14,48 3,46 2,09
5,6 13,13 26,47 4,62 2,86 11,77 24,28 4,40 2.76
10,0 26,34 40,46 6.11 3,31 23,08 38,14 5,82 3,28
11,0 29,63 42,63 6,39 3,34 26,02 40,47 6,09 3,32
17,0 48,63 49,27 7,67 3,21 43,67 48,72 7,39 3,30

Commas indicate decimal points.
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